

# IIC: Inter-Integrated Circuit Philips 1982 Aim: connecting many devices (around 128 devices) to the MCU using two wires

2









|   | Master vs. Slave                        |   |
|---|-----------------------------------------|---|
|   | ■ Master                                |   |
|   | ■ Begins the communication              |   |
|   | ■ Chooses the slave                     |   |
|   | ■ Makes clock                           |   |
|   | Sends or receives data                  |   |
|   | ■ Slave                                 |   |
|   | Responds to the master                  |   |
|   | ■ Each slave has a unique 7-bit address |   |
|   |                                         |   |
|   |                                         |   |
|   |                                         |   |
|   | <b>M</b> icer                           |   |
| 7 |                                         |   |
|   |                                         |   |
|   |                                         |   |
|   |                                         | _ |
|   | Master vs. Slave (Cont.)                |   |

Nicer

■ There might be more than 1 master on an I2C

■ Each device can be both Master and Slave

8

# Steps of a communication

- 1. Start
- 2. Address
- 3. Send or Receive (Write or read)
- 4. Acknowledge
- 5. Send/receive a byte of data
- 6. Acknowledge
- 7. Stop



















| TWDR (TWI Data Register) |  |
|--------------------------|--|
|                          |  |
|                          |  |
|                          |  |
|                          |  |
|                          |  |
|                          |  |
|                          |  |
|                          |  |
| <b>P</b>                 |  |

# TWI, Master Mode programming

- Initializing
  - Set the TWI module clock frequency by setting the values of the TWBR register and the TWPS bits in the TWSR register.
  - Set the TWEN bit in TWCR to one to enable the TWI module
- Transmit START condition
  - Set TWEN, TWSTA, and TWINT bits of TWCR to one.

20

### TWI, Master Mode programming

- Send Data
  - Copy the data byte to the TWDR
  - Set the TWEN and TWINT bits of the TWCR to one to start sending the byte.
  - Poll TWINT flag in TWCR register to see whether the byte transmitted completely
- Receive Data
  - Set TWEN and TWINT bits of TWCR to one to start receiving a byte.
  - Poll TWINT flag in TWCR to see whether a byte has been received completely
  - read the received byte from the TWDR

### TWI, Master Mode programming

- ■Transmit STOP condition
  - Set TWEN, TWSTO, and TWINT bits of TWCR to one
    - Note: we cannot poll the TWINT flag after transmitting the STOP condition

22

# Writing and reading a byte in master mode

23

### TWI, Slave Mode programming

- Initializing
  - Set the slave address by setting the values for the TWAR register.
    - 7 bits for address
    - 8th bit is TWGCE (1 = answer general calls)
  - Set the TWEN bit in TWCR to one to enable the TWI module
  - Set the TWEN, TWINT, and TWEA bits of TWCR to one to enable the TWI and acknowledge generation
- Listening
  - poll the TWINT flag to see when the slave is addressed by a master device or use its interrupt

# TWI, Slave Mode programming

- Send Data
  - Copy the data byte to the TWDR
  - Set the TWEN, TWEA, and TWINT bits of the TWCR register to one to start sending the byte.
  - Poll TWINT flag in TWCR register to see whether the byte transmitted completely
- Receive Data
  - Set TWEN and TWINT bits of TWCR to one to start receiving a byte.
  - Poll TWINT flag in TWCR to see whether a byte has been received completely
  - read the received byte from the TWDR

25



26



### DS1307 address map

- 64 bytes of RAM
- BCD format is used
- Bit7 of address location 0 (CH) should be zero to enable the oscillator
- Address location 07 is the control register

| ADDRESS | Bit7         | Bit6       | Bit5    | Bit4        | Bit3  | Bit2  | Bit1 | Bit0    | FUNCTION   | RANGE           |
|---------|--------------|------------|---------|-------------|-------|-------|------|---------|------------|-----------------|
| 00H     | CH           | 10 Seconds |         | Seconds     |       |       |      | Seconds | 00-59      |                 |
| 01H     | 0 10 Minutes |            |         | Minutes     |       |       |      | Minutes | 00-59      |                 |
| 0011    | 0            | 12         | 10 Hour | 40.11       |       |       |      |         | 1-12       |                 |
| 02H     |              | 24         | PM/AM   | 10 Hour     |       | Hours |      |         | Hours      | +AM/PM<br>00-23 |
| 03H     | 0            | 0          | 0       | 0           | 0 DAY |       | Day  | 01-07   |            |                 |
| 04H     | 0            | 0          | 100     | Date        | Date  |       |      |         | Date       | 01-31           |
| 05H     | 0            | 0          | 0       | 10<br>Month | Month |       |      | Month   | 01-12      |                 |
| 06H     |              | 10         | Year    |             | Year  |       |      |         | Year       | 00-99           |
| 07H     | OUT          | 0          | 0       | SQWE        | 0     | 0     | RS1  | RS0     | Control    | _               |
| 08H-3FH |              |            | •       | •           |       |       |      |         | RAM 56 x 8 | 00H-FFH         |

28

### Register Pointer in DS1307

Register pointer:

- In DS1307 there is a register pointer that specifies the byte that will be accessed in the next read or write command.
- After each read or write operation, the content of the register pointer is automatically incremented. It is useful in multi-byte read or write.

29

### Write to DS1307

- Transmit START condition
- Transmit the address of DS1307 (1001101) followed by 0 to indicate a write operation
- Transmit the address of location you want to access (it set the value of Register Pointer)
- Transmit one or more bytes of date
- Transmit STOP condition

### Read from DS1307

- Transmit START condition
- Transmit the address of DS1307 (1001101) followed by 1 to indicate a read operation
- Receive one or more bytes of date
- Transmit STOP condition
  - Note: the register pointer indicates which address will be read (you should set it using a write operation)

31

### Set Time and Get Time void rtc\_setTime(unsigned char h,unsigned char m,unsigned char s) //transmit START condition i2c\_start(); i2c\_write(0xD0); //address DS1307 for write i2c\_write(0); i2c\_write(s); //set register pointer to 0 //set seconds i2c\_write(m); //set minutes i2c\_write(h); i2c\_stop(); //set hour //transmit STOP condition void rtc\_getTime(unsigned char \*h,unsigned char \*m,unsigned char \*s) { i2c\_start(); i2c\_write(0xD0); i2c\_write(0); //transmit START condition //address DS1307 for write //set register pointer to 0 //transmit STOP condition i2c\_stop(); i2c\_start(); i2c\_write(0xD1); //transmit START condition //address DS1307 for read

32



