
JANUARY/FEBRUARY 2006 270278-6648/06/$20.00 © 2006 IEEE

ANIMATRONICS ARE USED in the
movie industry to bring aliens,
dinosaurs, and man-eating sharks
to life. Many mechanical devices
are used to impart realism to
these puppets. Large motors and
hydraulics are employed to control
limbs, necks, and other areas
requiring high torque. Small motors
are used to create facial expres-
sions, control eyes, and provide
fluidity of movement to add life to
these robots.

A common motor used in ani-
matronics is a servo motor. Instead
of providing constant rotation, like
most motors, servos are used for
precise angular positioning but are
often limited to only 180◦ of maxi-
mum rotation. Dozens of servos are
used to control the facial expres-
sions of a robotic puppet. Even a
simple android might have five servos
controlling just the eyes. The latex skin
or muscles of an android’s face are con-
nected to the servo’s shaft so that the
servo can contort the face into different
expressions. Servos are also common in
devices such as radio-controlled cars to
control steering, radio-controlled air-
planes to control rudders, or even in the
cruise control systems of cars. Servos are
ideal for applications requiring absolute
positioning of a motor shaft.

Microcontrollers are an excellent and
inexpensive device for controlling ser-
vos. In order to properly control a
servo with a microcontroller, it is neces-
sary to learn a few techniques, such as
properly generating a control signal for
a servo, which the rest of this article
will cover.

Servos may be purchased in a
prepackaged form, or you can create

your own servo with a few common
components. Internally, a servo can be
thought of as a direct current (dc) motor
(which rotates an external motor shaft
but provides no way to determine the
amount of rotation) with a built-in con-
troller. The control circuitry compares
an angular position, determined by a
control signal, to the current position of
the motor shaft (as shown in Fig. 1).
The motor shaft’s angular position is
often determined by a potentiometer,
which is rotated by the motor shaft. A
potentiometer is a three-terminal resistor
whose center connection has variable
resistance, usually controlled by a slider
or dial. The potentiometer acts as a vari-
able voltage divider. The voltage from
the center connection of the poten-
tiometer represents the angular position
the motor shaft is in. Other methods to
determine angular position and rotation

exist for bigger servos, but a poten-
tiometer is the most common for small
servos. The built-in controller generates
an internal signal from the voltage con-
trolled by the potentiometer, compares
it to the control signal, and then pro-
vides power to the dc motor to rotate
the shaft in the appropriate direction to

match the two. Servos usually
require a pulse-width modulated
control signal.

Pulse-width modulation
Often, when controlling an ana-

log device, the ability to drive a
signal with variable power (P = I
× V) is needed. For example, you
may want to adjust the speed of a
dc motor or dim a light-emitting
diode (LED). This can be a chal-
lenge when the signal is generated
by a digital device. Different meth-
ods to convert a digital signal to an
analog signal exist, one of which is
a digital-to-analog converter. Using
a converter will add complexity to
a project, so generating a variable
power signal with existing circuitry
is desirable to reduce the number
of components.

An easy method to vary the
power using a digital signal, when
an analog signal isn’t available, is
by a method called pulse-width
modulation (PWM). Instead of con-
trolling the current or voltage of a
signal, a pulse-width-modulated
signal works by repeatedly pulsing
the digital signal high and low at a
fast rate. When sufficiently fast, the
signal creates an effective average

voltage. A shorter PWM period (the
length between the rising edges) will
create a cleaner average voltage,
because the signal is effectively less “jit-
tery” (i.e., less discharge from the capac-
itance in the line is needed to smooth
the signal), but the minimum period will
be limited by the speed of the device
generating the signal. The period of the
PWM signal is usually constant for a
given application, and the high pulse
width (the duration of the signal being
driven high within one period) is usual-
ly variable, so that the average voltage
of the signal can be changed. The ratio
of high pulse width to period of the sig-
nal is called the duty cycle. By varying
the duty cycle, you can vary the average
voltage, as shown in Fig. 2.

The power through a device is pro-
portional to the voltage supplied.
Therefore, to decrease the power usage

©
A

R
T

V
IL

LE
, L

LC
.

Pulse-width modulation
for microcontroller
servo control

NATHANIEL PINCKNEY

of a device (to dim an LED
or to slow a motor), the duty
cycle of the PWM signal
should be decreased. A PWM
signal can be used to limit
the power to a device to
save energy. This technique
is used in many portable
devices which have limited
battery power. For example,
wave a device with an LED
back and forth in your hand
and you will often see a
strobe light effect instead of
a straight streak. This blink-
ing is from the pulse-width-
modulated signal turning the
LED on and off. The blinking
cannot normally be per-
ceived by the human eye when the LED
is stationary, since it is blinking at a rate
faster than the eye can perceive. But
when moving, the discrete flashes
become visible because the LED is only
lit up at certain positions as it moves.

Some devices, such as servos, do
not rely on the power of the signal
limited by PWM but instead use the
width of the high pulses to transmit
information. This is also used by
infrared remote controls to transmit
data to control a television or radio.
Pulse-width-modulated signals may
be generated from many digi ta l
devices, even ones as simple as an
inexpensive timer integrated circuit
(such as the 8-pin 555 timer). A ver-
satile yet inexpensive solution for
many robotics hobbyists is to use
microcontroller for PWM generation.
Using a microcontroller has the added
advantage of containing all of the
control circuitry (needed for analyz-

ing and responding to input) for a
simple robot on a single chip.

Signal generation with a PIC
Pulse-width-modulated signal genera-

tion is easy to implement on microcon-
trollers. All microcontrollers will be able
to generate a PWM signal, but the more
expensive and elaborate ones provide
hardware to make PWM generation easi-
er, freeing up more processor time to
run other tasks. An inexpensive and eas-
ily obtainable microcontroller, such as
the PICmicro 18F452, provides enough
hardware to implement PWM generation
using a few different methods, depend-
ing on the needs of the application.

The simplest but most processor-
intensive method to create a PWM sig-
nal is manually comparing a “count” to
a variable that describes how long the
high pulse width should be. When the
count is less than the pulse width vari-
able, the PWM signal is driven high;

otherwise, it is driven low.
After the PWM period has
elapsed, the count can be
reset and the process started
over. The PWM period will
be the same as the time it
takes the PIC to run your
code. To increase the length
of the PWM period, loops
can be used to create delay.
This method will work on
the simplest of PICs but
leaves little processor time to
do anything else. A couple
variations exist and can be
used if the PIC includes the
necessary hardware. A timer
can be used and polled at
intervals in between code to

determine if the PWM signal needs to
be updated. Another solution is to have
the PIC update the PWM signal on a
timer overflow interrupt. This guaran-
tees that the PWM signal will be updat-
ed at specific intervals, while most of
the processor time can be used for
other tasks.

The least processor-intensive
method is to use a built-in PWM mod-
ule if your microcontroller has one.
When enabled, the PWM module will
automatically generate a PWM signal
with a period and duty cycle specified
in control registers on the PIC.
Depending on the microcontroller you
are using and the speed it is running
at, the built-in PWM module might not
support a large enough period needed
for the device you are using, such as
for a servo motor (which commonly
has a period of 20 ms). In that case,
you will want to use one of the previ-
ously mentioned methods to generate
a longer PWM signal.

Controlling a servo
Most servos, including the Hitec

RCD USA, Inc. HS-322HD demonstrated
here, have three pins: power, ground,
and a control signal. The control signal
is a pulse-width-modulated input signal
whose high pulse width determines the
servo’s angular position, as shown in
Fig. 3. Internally, the servo compares
the PWM control signal to an internally
generated signal, whose pulse widths
are controlled by the potentiometer
(which determines the shaft angle) and
matches the pulse widths by rotating
the motor shaft. For the HS-322HD,
power can be between 4.8 Vdc (volts
of direct current) and 6 Vdc. Since
the control signal (which draws a

28 IEEE POTENTIALS

Fig. 1 The inside of a servo

Fig. 2 Pulse width modulation and average voltage

Variable
Voltage Potentiometer Motor

Shaft

Internal Signal
Generator

Compare
Control
Signal

DC Motor Control

=>

=>

PWM, Duty Cycle = 1/4

PWM, Duty Cycle = 3/4

Pulse Length

Pulse
Length

Period

Period

High

Low

High

Low

Average Voltage = 1/4 Vdd

Average Voltage = 3/4 Vdd

JANUARY/FEBRUARY 2006 29

maximum of about 20 mA)
does not drive the motor
directly, an additional bene-
fit of using a servo is that the
PIC (whose output pins can
drive up to 25 mA) can
drive the control signal
directly. Most motors draw
more than 25 mA of current
for operation and, therefore,
must be indirectly connected
to the PIC through a current
amplifying device, like an H-
bridge or a transistor.

Typically, servos require
a PWM signal with a 20-ms
period and a pulse width
between 0.9–2.1 ms (0.9 ms
corresponds to the minimum
angle and 2.1 ms corre-
sponds to the maximum
angle); therefore, the middle
position is 1.5 ms (the average of the
minimum/maximum pulse widths). The
HS-322HD has a maximum angle of
180◦. Servos only move a finite angular
amount per cycle of the signal, so mul-
tiple cycles must be sent before the
servo arrives at the correct angle. The
speed/power at which the servo moves
to a new position is proportional to the
distance it needs to travel. So as the
servo becomes closer to the target
angle, it will gradually slow. The servo
will resist change away from the desig-
nated angle as long as a signal is
applied. Note that the servo’s control
mechanism will only engage when a

signal is applied. If there is no signal,
the servo’s motor shaft is not driven by
any circuitry and, hence, can be rotated
freely, even when power is supplied to
the servo.

Conclusions
Microcontrollers offer a simple and

inexpensive solution for controlling
servo motors for robotics and other
electronics projects. Through the use of
PWM, the angular position of the servo
motor shaft can be conveniently con-
trolled by a microcontroller for a vari-
ety of projects. PWM is an easy solu-
tion for the control of analog devices in

other projects as well.
Depending on the features
included with the microcon-
troller you are using, a PWM
signal can be generated in a
variety of ways.

Additional resources
This article was written

jointly with the development
of a set of tutorials on how
to use different devices with
the Microchip Technology’s
PIC 18F452 microcontroller
and Xilinx’s Spartan 3 FPGA.
Five undergraduate students
and two professors under-
took the development of the
tutorials, appropriately
named MicroToys guides.
More information about PIC-
controlled servos, as well as

controlling other devices with a PIC
microcontroller, can be found at Harvey
Mudd College’s E155 MicroToys Web
site at <http://www4. hmc.edu:8001/
Engineering/microtoys/>.

About the author
Nathaniel Pinckney is a first-year

undergraduate engineering student cur-
rently attending Harvey Mudd College.
Before attending Harvey Mudd, he was
home schooled since second grade. He
has been involved in the development
of various GNU/Linux software pro-
grams and is interested in parallel
embedded architecture design.

Fig. 3 Controlling an HS-322HD servo with PWM

PWM

0.9 ms

1.5 ms

2.1 ms

20 ms

Low

High

Low

High

Low

High

=>

=>

=>

