
Karnaugh Maps - Rules of Simplification  

(from https://www.electro-tech-online.com/attachments/karnaugh_maps-doc.2477 but slightly modified by DK) 

 

The Karnaugh map uses the following rules for the simplification of expressions by grouping together 

adjacent cells containing ones  

• Groups may not include any cell containing a zero  

 
• Groups may be horizontal or vertical, but not diagonal.  

 
• Groups must contain 1, 2, 4, 8, or in general 2n cells.  

That is if n = 1, a group will contain two 1's since 21 = 2.  

If n = 2, a group will contain four 1's since 22 = 4.  

 

https://www.electro-tech-online.com/attachments/karnaugh_maps-doc.2477
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• Each group should be as large as possible.  

 
• Each cell containing a one must be in at least one group.  

 
• Groups may overlap.  

 
• Groups may wrap around the table. The leftmost cell in a row may be grouped with the 

rightmost cell and the top cell in a column may be grouped with the bottom cell.  

 



• There should be as few groups as possible, as long as this does not contradict any of the 

previous rules.  

 

 

Summary:  

1. No zeros allowed.  

2. No diagonals.  

3. Only power of 2 number of cells in each group.  

4. Groups should be as large as possible.  

5. Every one must be in at least one group.  

6. Overlapping allowed.  

7. Wrap around allowed.  

8. Fewest number of groups possible.  

Composed by David Belton 

The Karnaugh map provides a simple and straight-forward method of minimising boolean expressions. 

With the Karnaugh map Boolean expressions having up to four and even six variables can be simplified.  

 

So what is a Karnaugh map?  

 

A Karnaugh map provides a pictorial method of grouping together expressions with common factors and 

therefore eliminating unwanted variables. The Karnaugh map can also be described as a special 

arrangement of a truth table.  

The diagram below illustrates the correspondence between the Karnaugh map and the truth table for the 

general case of a two variable problem.  

The values inside the squares are copied from the 

output column of the truth table, therefore there is one square in the map for every row in the truth table. 

Around the edge of the Karnaugh map are the values of the two input variable. A is along the top and B is 

down the left hand side. The diagram below explains this:  
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The values around the edge of the map can be 

thought of as coordinates. So as an example, the square on the top right hand corner of the map in the 

above diagram has coordinates A=1 and B=0. This square corresponds to the row in the truth table where 

A=1 and B=0 and F=1. Note that the value in the F column represents a particular function to which the 

Karnaugh map corresponds.  

Example 1:  

Consider the following map. The function plotted is: Z = f(A,B) = A  + AB  

 

• Note that values of the input variables form the rows and columns. That is the logic values of the 

variables A and B (with one denoting true form and zero denoting false form) form the head of 

the rows and columns respectively.  

• Bear in mind that the above map is a one dimensional type which can be used to simplify an 

expression in two variables.  

• There is a two-dimensional map that can be used for up to four variables, and a three-dimensional 

map for up to six variables.  

Using algebraic simplification,  

Z = A  + AB  

Z = A(  + B)  

Z = A  

Variable B becomes redundant due to Boolean Theorem T9a.  

Referring to the map above, the two adjacent 1's are grouped together. Through inspection it can 

be seen that variable B has its true and false form within the group. This eliminates variable B 

leaving only variable A which only has its true form. The minimised answer therefore is Z = A.  

Example 2:       Consider the expression Z = f(A,B) = + A + B plotted on the Karnaugh 

map:  
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Pairs of 1's are grouped as shown above, and the simplified answer is 

obtained by using the following steps:  

 

Note that two groups can be formed for the example given above, bearing in mind that the largest 

rectangular clusters that can be made consist of two 1s. Notice that a 1 can belong to more than 

one group.  

The first group labelled I, consists of two 1s which correspond to A = 0, B = 0 and A = 1, B = 0. 

Put in another way, all squares in this example that correspond to the area of the map where B = 0 

contains 1s, independent of the value of A. So when B = 0 the output is 1. The expression of the 

output will contain the term  

For group labelled II corresponds to the area of the map where A = 0. The group can therefore be 

defined as . This implies that when A = 0 the output is 1. The output is therefore 1 whenever B 

= 0 and A = 0  

Hence the simplified answer is Z = +  

Composed by David Belton 

University of Southern Maine 

Minimization of Boolean expressions using Karnaugh maps. 

Given the following truth table for the majority function.  

The Boolean algebraic expression is    m = a'bc + ab'c + abc' + abc.  

We have seen that the minimization is done as follows.   m = a'bc + abc + ab'c + abc + abc' + abc  

= (a' + a)bc + a(b' + b)c + ab(c' + c)     = bc + ac + ab    The abc term was replicated and combined with 

the other terms.  

http://www.usm.maine.edu/


To use a Karnaugh map we draw the following map which has a position (square) corresponding to each 

of the 8 possible combinations of the 3 Boolean variables. The upper left position corresponds to the 000 

row of the truth table, the lower right position corresponds to 110. Each square has two coordinates, the 

vertical coordinate corresponds to the value of variable a and the horizontal corresponds to the values of b 

and c.  

The 1s are in the same places as they were in the original truth table. 

The 1 in the first row is at position 011 (a = 0, b = 1, c = 1). The vertical coordinate, variable a, has the 

value 0. The horizontal coordinates, the variables b and c, have the values 1 and 1.  

The minimization is done by drawing circles around sets of adjacent 1s. Adjacency is horizontal, vertical, 

or both. The circles must always contain 2n 1s where n is an integer.  

We have circled two 1s. The fact that the circle 

spans the two possible values of a  

(0 and 1) means that the a term is eliminated from the Boolean expression corresponding to this circle. 

The bracketing lines shown above correspond to the positions on the map for which the given variable has 

the value 1. The bracket delimits the set of squares for which the variable has the value 1. We see that the 

two circled 1s are at the intersection of sets b and c, this means that the Boolean expression for this set is 

bc.  



Now we have drawn circles around all the 1s. The left bottom 

circle is the term ac. Note that the circle spans the two possible values of b, thus eliminating the b term. 

Another way to think of it is that the set of squares in the circle contains the same squares as the set a 

intersected with the set c. The other circle (lower right) corresponds to the term ab. Thus the expression 

reduces to     bc + ac + ab     as we saw before.  

What is happening? What does adjacency and grouping the 1s together have to do with minimization? 

Notice that the 1 at position 111 was used by all 3 circles. This 1 corresponds to the abc term that was 

replicated in the original algebraic minimization. Adjacency of 2 1s means that the terms corresponding to 

those 1s differ in one variable only. In one case that variable is negated and in the other it is not.  

For example, in the first map above, the one with only 1 circle. The upper 1 is the term a'bc and the lower 

is abc. Obviously they combine to form bc ( a'bc + abc = (a' + a)bc = bc ). That is exactly what we got 

using the map.  

The map is easier than algebraic minimization because we just have to recognize patterns of 1s in the map 

instead of using the algebraic manipulations. Adjacency also applies to the edges of the map.  

Let's try another 3 variable map.  

At first it may seem that we have two sets, one on the left of the 

map and the other on the right. Actually there is only 1 set because the left and right are adjacent as are 

the top and bottom. The expression for all 4 1s is c'. Notice that the 4 1s span both values of a (0 and 1) 

and both values of b (0 and 1). Thus, only the c value is left. The variable c is 0 for all the 1s, thus we 

have c'. The other way to look at it is that the 1's overlap the horizontal b line and the short vertical a line, 

but they all lay outside the horizontal c line, so they correspond to c'. (The horizontal c line delimits the c 

set. The c' set consists of all squares outside the c set. Since the circle includes all the squares in c', they 

are defined by c'. Again, notice that both values of a and b are spanned, thus eliminating those terms.)  



Now for 4 Boolean variables. The Karnaugh map is drawn as 

shown below.  

The following corresponds to the Boolean expression  

q = a'bc'd + a'bcd + abc'd' + abc'd + abcd + abcd' + ab'cd + ab'cd'  

RULE: Minimization is achieved by drawing the smallest 

possible number of circles, each containing the largest possible number of 1s.  

   

   

Grouping the 1s together results in the following.  



The expression for the groupings above is  

q = bd + ac + ab  

This expression requires 3 2-input and gates and 1 3-input or gate.  

We could have accounted for all the 1s in the map as shown below, but that results in a more complex 

expression requiring a more complex gate.  

The expression for the above is bd + ac + abc'd'. This requires 2 

2-input and gates, a 4-input and gate, and a 3 input or gate. Thus, one of the and gates is more complex 

(has two additional inputs) than required above. Two inverters are also needed.  

   

   

Don't Cares  

Sometimes we do not care whether a 1 or 0 occurs for a certain set of inputs. It may be that those inputs 

will never occur so it makes no difference what the output is. For example, we might have a bcd (binary 

coded decimal) code which consists of 4 bits to encode the digits 0 (0000) through 9 (1001). The 

remaining codes (1010 through 1111) are not used. If we had a truth table for the prime numbers 0 

through 9, it would be  



The ds in the above stand for "don't care", we don't care whether a 1 or 0 is the value for 

that combination of inputs because (in this case) the inputs will never occur.  

The circle made entirely of 1s corresponds to the expression 

a'd and the combined 1 and d circle (actually a combination of arcs) is b'c. Thus, if the disallowed input 

1011 did occur, the output would be 1 but if the disallowed input 1100 occurs, its output would be 0. The 

minimized expression is  

p = a'd + b'c  

Notice that if we had ignored the ds and only made a circle around the 2 1s, the resulting expression 

would have been more complex, a'b'c instead of b'c.  
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