William Stallings Data and Computer Communications 7th Edition

Chapter 3 Data Transmission

1

Terminology (1)

- Transmitter
- Receiver
- Medium
 - -Guided medium
 - e.g. twisted pair, optical fiber
 - -Unguided medium

• e.g. air, water, vacuum

2

Terminology (2)

- Direct link
- -No intermediate devices
- Point-to-point
 - —Direct link
 - -Only 2 devices share link
- Multi-point
 - -More than two devices share the link

Terminology (3)

- Simplex
 - -One direction
 - e.g. Television
- Half duplex
 - -Either direction, but only one way at a time
 - e.g. police radio
- Full duplex
 - -Both directions at the same time
 - e.g. telephone

4

Frequency, Spectrum and Bandwidth

- Time domain concepts
 - —Analog signal
 - Various in a smooth way over time
 - Digital signal
 - Maintains a constant level then changes to another constant level
 - Periodic signal
 - Pattern repeated over time
 - —Aperiodic signal
 - Pattern not repeated over time

Sine Wave

- Peak Amplitude (A)

 maximum strength of signal
 volts
- Frequency (f)
 - -Rate of change of signal
 - -Hertz (Hz) or cycles per second
 - -Period = time for one repetition (T)

-T = 1/f

- - -Relative position in time

Wavelength

- Distance occupied by one cycle
- Distance between two points of corresponding phase in two consecutive cycles
- λ
- Assuming signal velocity v

```
-\lambda = vT
```

```
-\lambda f = v
```

 $-c = 3*10^8 \text{ ms}^{-1}$ (speed of light in free space)

10

Frequency Domain Concepts

- Signal usually made up of many frequencies
- Components are sine waves
- Can be shown (Fourier analysis) that any signal is made up of component sine waves
- Can plot frequency domain functions

13

Spectrum & Bandwidth

- Spectrum
- -range of frequencies contained in signal
- Absolute bandwidth —width of spectrum
- Effective bandwidth
 - -Often just *bandwidth*
 - -Narrow band of frequencies containing most of the energy
- DC Component —Component of zero frequency

Data Rate and Bandwidth

- Any transmission system has a limited band of frequencies
- This limits the data rate that can be carried

16

Analog and Digital Data Transmission

Data

- -Entities that convey meaning
- Signals
 - -Electric or electromagnetic representations of data
- Transmission

 Communication of data by propagation and processing of signals

17

Analog and Digital Data

Analog

- -Continuous values within some interval
- -e.g. sound, video
- Digital
 - -Discrete values
 - -e.g. text, integers

Analog and Digital Signals

- Means by which data are propagated
- Analog
 - -Continuously variable
 - -Various media
 - wire, fiber optic, space
 - -Speech bandwidth 100Hz to 7kHz
 - -Telephone bandwidth 300Hz to 3400Hz
 - -Video bandwidth 4MHz
- Digital
 - -Use two DC components

20

Advantages & Disadvantages of Digital

- Cheaper
- Less susceptible to noise
- Greater attenuation
 - -Pulses become rounded and smaller
 - -Leads to loss of information

Components of Speech

- Frequency range (of hearing) 20Hz-20kHz —Speech 100Hz-7kHz
- Easily converted into electromagnetic signal for transmission
- Sound frequencies with varying volume converted into electromagnetic frequencies with varying voltage
- Limit frequency range for voice channel —300-3400Hz

Video Components

- USA 483 lines scanned per frame at 30 frames per second
 - $-\,525$ lines but 42 lost during vertical retrace
- So 525 lines x 30 scans = 15750 lines per second $-63.5\mu s$ per line
 - $-11 \mu s$ for retrace, so 52.5 μs per video line
- Max frequency if line alternates black and white
- Horizontal resolution is about 450 lines giving 225 cycles of wave in 52.5 μs
- Max frequency of 4.2MHz

25

Binary Digital Data

- From computer terminals etc.
- Two dc components
- Bandwidth depends on data rate

Data and Signals

- Usually use digital signals for digital data and analog signals for analog data
- Can use analog signal to carry digital data —Modem
- Can use digital signal to carry analog data —Compact Disc audio

28

Analog Transmission

- Analog signal transmitted without regard to content
- May be analog or digital data
- Attenuated over distance
- Use amplifiers to boost signal
- Also amplifies noise

31

Digital Transmission

- Concerned with content
- Integrity endangered by noise, attenuation etc.
- Repeaters used
- Repeater receives signal
- Extracts bit pattern
- Retransmits
- Attenuation is overcome
- Noise is not amplified

32

Advantages of Digital Transmission

- Digital technology
- Low cost LSI/VLSI technology
- Data integrity
- Longer distances over lower quality linesCapacity utilization
 - High bandwidth links economical
 - High degree of multiplexing easier with digital techniques
- Security & Privacy
 - Encryption
- Integration
 - -Can treat analog and digital data similarly

Transmission Impairments

- Signal received may differ from signal transmitted
- Analog degradation of signal quality
- Digital bit errors
- Caused by
 - —Attenuation and attenuation distortion
 - —Delay distortion

-Noise

34

Attenuation

- Signal strength falls off with distance
- Depends on medium
- Received signal strength:
 - -must be enough to be detected
 - must be sufficiently higher than noise to be received without error
- Attenuation is an increasing function of frequency

35

Delay Distortion

- Only in guided media
- Propagation velocity varies with frequency

Noise (1)

- Additional signals inserted between transmitter and receiver
- Thermal
 - —Due to thermal agitation of electrons
 - -Uniformly distributed
 - -White noise
- Intermodulation
 - —Signals that are the sum and difference of original frequencies sharing a medium

37

Noise (2)

- Crosstalk
 - —A signal from one line is picked up by another
- Impulse
 - -Irregular pulses or spikes
 - -e.g. External electromagnetic interference
 - —Short duration
 - -High amplitude

38

Channel Capacity

- Data rate
 - -In bits per second
 - -Rate at which data can be communicated
- Bandwidth
 - —In cycles per second of Hertz
 - -Constrained by transmitter and medium

Nyquist Bandwidth

- If rate of signal transmission is 2B then signal with frequencies no greater than B is sufficient to carry signal rate
- Given bandwidth B, highest signal rate is 2B
- Given binary signal, data rate supported by B Hz is 2B bps
- Can be increased by using M signal levels
- C= 2B log₂M

40

Shannon Capacity Formula

- Consider data rate, noise and error rate
- Faster data rate shortens each bit so burst of noise affects more bits
 - At given noise level, high data rate means higher error rate
- Signal to noise ration (in decibels)
- SNR_{db}=10 log₁₀ (signal/noise)
- Capacity C=B log₂(1+SNR)
- This is error free capacity

41

Required Reading

• Stallings chapter 3