William Stallings Data and Computer Communications 7th Edition

Chapter 5
Signal Encoding Techniques

1

Encoding Techniques

- Digital data, digital signal
- · Analog data, digital signal
- Digital data, analog signal
- Analog data, analog signal

2

Digital Data, Digital Signal

- Digital signal
 - —Discrete, discontinuous voltage pulses
 - —Each pulse is a signal element
 - —Binary data encoded into signal elements

l	
•	
٠	

Terms ((1)
---------	-----

- Unipolar
 - —All signal elements have same sign
- Polar
 - One logic state represented by positive voltage the other by negative voltage
- Data rate
 - -Rate of data transmission in bits per second
- Duration or length of a bit
 - —Time taken for transmitter to emit the bit

4

Terms (2)

- Modulation rate
 - —Rate at which the signal level changes
 - —Measured in baud = signal elements per second
- Mark and Space
 - —Binary 1 and Binary 0 respectively

5

Interpreting Signals

- Need to know
 - —Timing of bits when they start and end
 - —Signal levels
- Factors affecting successful interpreting of signals
 - —Signal to noise ratio
 - —Data rate
 - -Bandwidth

ı		1	
J	r	7	
	۰	•	

Comparison of Encoding Schemes (1)

- Signal Spectrum
 - —Lack of high frequencies reduces required bandwidth
 - —Lack of dc component allows ac coupling via transformer, providing isolation
 - —Concentrate power in the middle of the bandwidth
- Clocking
 - —Synchronizing transmitter and receiver
 - —External clock
 - -Sync mechanism based on signal

7

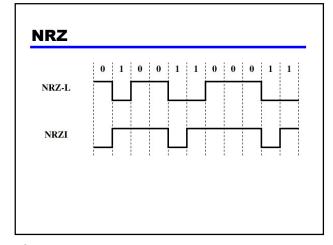
Comparison of Encoding Schemes (2)

- Error detection
 - —Can be built in to signal encoding
- · Signal interference and noise immunity
 - —Some codes are better than others
- Cost and complexity
 - —Higher signal rate (& thus data rate) lead to higher costs
 - —Some codes require signal rate greater than data rate

8

Encoding Schemes

- Nonreturn to Zero-Level (NRZ-L)
- Nonreturn to Zero Inverted (NRZI)
- Bipolar -AMI
- Pseudoternary
- Manchester
- Differential Manchester
- B8ZS
- HDB3


Nonreturn to Zero-Level (NRZ-L)

- Two different voltages for 0 and 1 bits
- Voltage constant during bit interval
 —no transition I.e. no return to zero voltage
- e.g. Absence of voltage for zero, constant positive voltage for one
- More often, negative voltage for one value and positive for the other
- This is NRZ-L

10

Nonreturn to Zero Inverted

- Nonreturn to zero inverted on ones
- Constant voltage pulse for duration of bit
- Data encoded as presence or absence of signal transition at beginning of bit time
- Transition (low to high or high to low) denotes a binary 1
- No transition denotes binary 0
- An example of differential encoding

Differential Encodi	ng
---------------------	----

- Data represented by changes rather than levels
- More reliable detection of transition rather than level
- In complex transmission layouts it is easy to lose sense of polarity

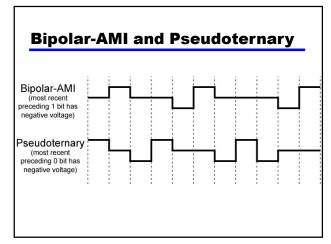
13

NRZ pros and cons

- Pros
 - -Easy to engineer
 - -Make good use of bandwidth
- Cons
 - —dc component
 - -Lack of synchronization capability
- Used for magnetic recording
- Not often used for signal transmission

14

Multilevel Binary


- Use more than two levels
- Bipolar-AMI
 - -zero represented by no line signal
 - —one represented by positive or negative pulse
 - —one pulses alternate in polarity
 - No loss of sync if a long string of ones (zeros still a problem)
 - -No net dc component
 - —Lower bandwidth
 - -Easy error detection

1	5
_	J

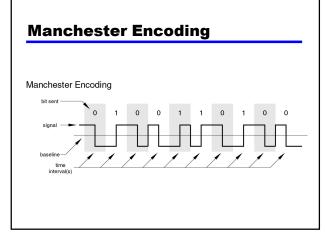
Pseudoternary

- One represented by absence of line signal
- Zero represented by alternating positive and negative
- No advantage or disadvantage over bipolar-AMI

16

17

Trade Off for Multilevel Binary

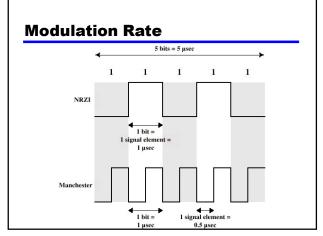

- Not as efficient as NRZ
 - —Each signal element only represents one bit
 - —In a 3 level system could represent $log_2 3 = 1.58$ bits
 - —Receiver must distinguish between three levels (+A, -A, 0)
 - Requires approx. 3dB more signal power for same probability of bit error


Biphase

- Manchester
 - —Transition in middle of each bit period
 - Transition serves as clock and data

 - Low to high represents oneHigh to low represents zero
 - —Used by IEEE 802.3
- Differential Manchester
 - Midbit transition is clocking only
 - Transition at start of a bit period represents zero
 - No transition at start of a bit period represents one
 - Note: this is a differential encoding scheme
 - —Used by IEEE 802.5

19



Biphase Pros and Cons

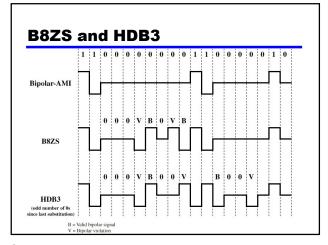
- Con
 - —At least one transition per bit time and possibly two
 - -Maximum modulation rate is twice NRZ
 - -Requires more bandwidth
- Pros
 - —Synchronization on mid bit transition (self clocking)
 - —No dc component
 - -Error detection
 - Absence of expected transition

22

23

Scrambling

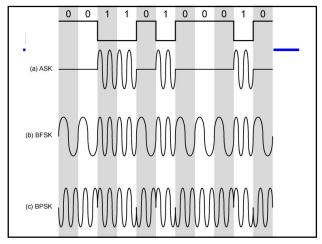
- Use scrambling to replace sequences that would produce constant voltage
- Filling sequence
 - Must produce enough transitions to sync
 - Must be recognized by receiver and replace with original
 - —Same length as original
- No dc component
- No long sequences of zero level line signal
- No reduction in data rate
- · Error detection capability


B8ZS

- Bipolar With 8 Zeros Substitution
- Based on bipolar-AMI
- If octet of all zeros and last voltage pulse preceding was positive encode as 000+-0-+
- If octet of all zeros and last voltage pulse preceding was negative encode as 000-+0+-
- Causes two violations of AMI code
- Unlikely to occur as a result of noise
- Receiver detects and interprets as octet of all zeros

25

HDB3


- High Density Bipolar 3 Zeros
- Based on bipolar-AMI
- String of four zeros replaced with one or two pulses

Digital Data, Analog Signal

- Public telephone system
 - -300Hz to 3400Hz
 - —Use modem (modulator-demodulator)
- Amplitude shift keying (ASK)
- Frequency shift keying (FSK)
- Phase shift keying (PK)

28

29

Amplitude Shift Keying

- Values represented by different amplitudes of carrier
- · Usually, one amplitude is zero
 - —i.e. presence and absence of carrier is used
- Susceptible to sudden gain changes
- Inefficient
- Up to 1200bps on voice grade lines
- Used over optical fiber

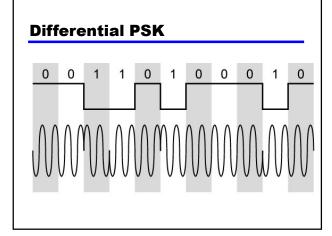
Binary Frequency Shift Keying

- Most common form is binary FSK (BFSK)
- Two binary values represented by two different frequencies (near carrier)
- Less susceptible to error than ASK
- Up to 1200bps on voice grade lines
- High frequency radio
- Even higher frequency on LANs using co-ax

31

Multiple FSK

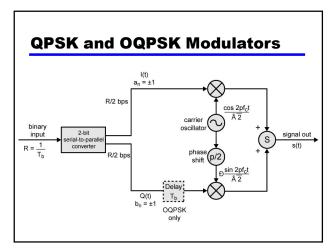
- More than two frequencies used
- More bandwidth efficient
- More prone to error
- Each signalling element represents more than one bit

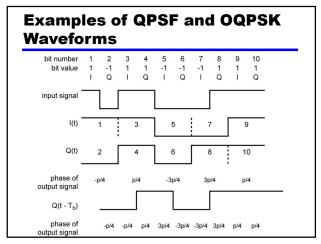

32

FSK on Voice Grade Line signal strength spectrum of signal transmitted in one direction spectrum of signal transmitted in opposite direction opposite direction Figure 5.8 Full-Duplex FSK Transmission on a Voice-Grade Line

Phase Shift Keying

- Phase of carrier signal is shifted to represent data
- Binary PSK
 - —Two phases represent two binary digits
- Differential PSK
 - Phase shifted relative to previous transmission rather than some reference signal


34

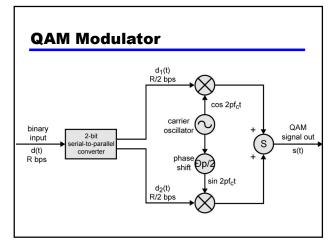

35

Quadrature PSK

- More efficient use by each signal element representing more than one bit
 - -e.g. shifts of $\pi/2$ (90°)
 - -Each element represents two bits
 - —Can use 8 phase angles and have more than one amplitude
 - $-9600 \mathrm{bps}$ modem use 12 angles , four of which have two amplitudes
- Offset QPSK (orthogonal QPSK)
 - —Delay in Q stream

37

38


Performance of Digital to Analog Modulation Schemes

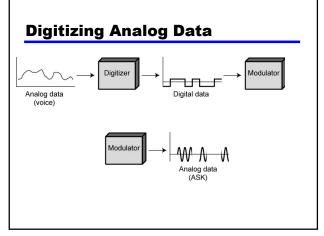
- Bandwidth
 - —ASK and PSK bandwidth directly related to bit rate
 - FSK bandwidth related to data rate for lower frequencies, but to offset of modulated frequency from carrier at high frequencies
 - —(See Stallings for math)
- In the presence of noise, bit error rate of PSK and QPSK are about 3dB superior to ASK and FSK

Quadrature Amplitude Modulation

- QAM used on asymmetric digital subscriber line (ADSL) and some wireless
- Combination of ASK and PSK
- Logical extension of QPSK
- Send two different signals simultaneously on same carrier frequency
 - —Use two copies of carrier, one shifted 90°
 - -Each carrier is ASK modulated
 - —Two independent signals over same medium
 - —Demodulate and combine for original binary output

40

41


QAM Levels

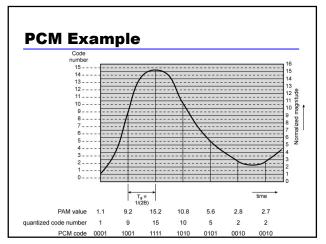
- Two level ASK
 - —Each of two streams in one of two states
 - —Four state system
 - —Essentially QPSK
- Four level ASK
 - —Combined stream in one of 16 states
- 64 and 256 state systems have been implemented
- Improved data rate for given bandwidth
 - -Increased potential error rate

Analog Data, Digital Signal

- Digitization
 - —Conversion of analog data into digital data
 - —Digital data can then be transmitted using NRZ-L
 - —Digital data can then be transmitted using code other than NRZ-L
 - —Digital data can then be converted to analog signal
 - —Analog to digital conversion done using a codec
 - —Pulse code modulation
 - -Delta modulation

43

44

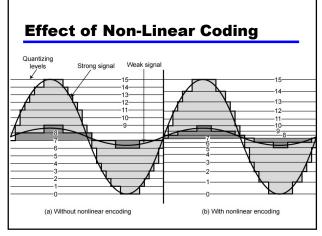

Pulse Code Modulation(PCM) (1)

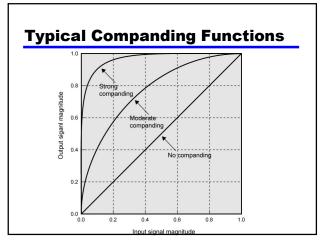

- If a signal is sampled at regular intervals at a rate higher than twice the highest signal frequency, the samples contain all the information of the original signal
 - —(Proof Stallings appendix 4A)
- Voice data limited to below 4000Hz
- Require 8000 sample per second
- Analog samples (Pulse Amplitude Modulation, PAM)
- Each sample assigned digital value

Pulse Code Modulation(PCM) (2)

- 4 bit system gives 16 levels
- Quantized
 - -Quantizing error or noise
 - —Approximations mean it is impossible to recover original exactly
- 8 bit sample gives 256 levels
- Quality comparable with analog transmission
- 8000 samples per second of 8 bits each gives 64kbps

46

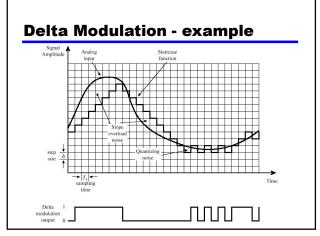


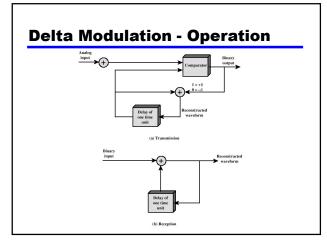


Nonlinear Encoding

- Quantization levels not evenly spaced
- Reduces overall signal distortion
- Can also be done by companding

49





Delta Modulation

- Analog input is approximated by a staircase function
- Move up or down one level (δ) at each sample interval
- Binary behavior
 - —Function moves up or down at each sample interval

52

Delta Modulation - Performance

- Good voice reproduction
 - -PCM 128 levels (7 bit)
 - -Voice bandwidth 4khz
 - —Should be $8000 \times 7 = 56$ kbps for PCM
- Data compression can improve on this
 - —e.g. Interframe coding techniques for video

55

Analog Data, Analog Signals

- Why modulate analog signals?
 - —Higher frequency can give more efficient transmission
 - —Permits frequency division multiplexing (chapter 8)
- Types of modulation
 - —Amplitude
 - —Frequency
 - -Phase

56

Analog Modulation Carrier Modulating size-wave signal Amplitude-modulated OSRTC) wave Physic-modulated wave Preprintsy-modulated wave

Required Reading	_	
Stallings chapter 5	_	
	_	
	_	
	-	
	-	
	_	