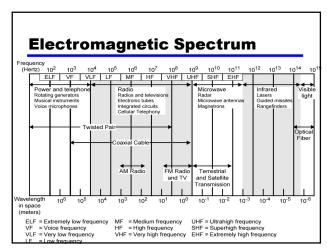
William Stallings Data and Computer Communications 7th Edition

Chapter 4
Transmission Media

1


Overview

- Guided wire
- Unguided wireless
- Characteristics and quality determined by medium and signal
- For guided, the medium is more important
- For unguided, the bandwidth produced by the antenna is more important
- Key concerns are data rate and distance

2

Design Factors

- Bandwidth
 - -Higher bandwidth gives higher data rate
- Transmission impairments
 - —Attenuation
- Interference
- Number of receivers
 - —In guided media
 - More receivers (multi-point) introduce more attenuation

Guided Transmission Media

- Twisted Pair
- Coaxial cable
- · Optical fiber

5

Transmission Characteristics of Guided Media

	Frequency Range	Typical Attenuation	Typical Delay	Repeater Spacing
Twisted pair (with loading)	0 to 3.5 kHz	0.2 dB/km @ 1 kHz	50 μs/km	2 km
Twisted pairs (multi-pair cables)	0 to 1 MHz	0.7 dB/km @ 1 kHz	5 μs/km	2 km
Coaxial cable	0 to 500 MHz	7 dB/km @ 10 MHz	4 μs/km	1 to 9 km
Optical fiber	186 to 370 THz	0.2 to 0.5 dB/km	5 μs/km	40 km

Separately insulated Twisted together	twist length
Often "bundled" into cables Usually installed in building during construction	(a) Twisted pair

Twisted Pair - Applications

- Most common medium
- Telephone network
 - —Between house and local exchange (subscriber loop)
- Within buildings
 - —To private branch exchange (PBX)
- For local area networks (LAN)
 - —10Mbps or 100Mbps

8

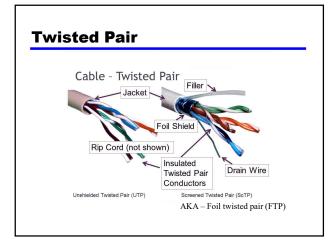
Twisted Pair - Pros and Cons

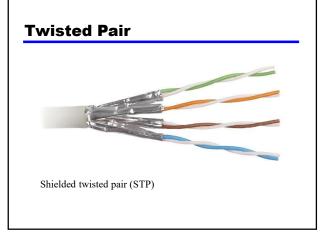
- Cheap
- · Easy to work with
- Low data rate
- Short range

Twisted Pair - Transmission Characteristics

- Analog
 - -Amplifiers every 5km to 6km
- Digital
 - —Use either analog or digital signals
 - -repeater every 2km or 3km
- Limited distance
- Limited bandwidth (1MHz)
- Limited data rate (100MHz)
- · Susceptible to interference and noise

10

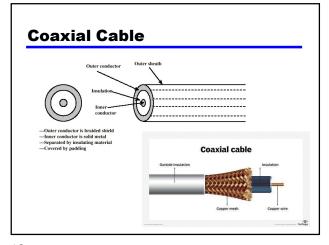

Near End Crosstalk


- Coupling of signal from one pair to another
- Coupling takes place when transmit signal entering the link couples back to receiving pair
- i.e. near transmitted signal is picked up by near receiving pair

11

Unshielded and Shielded TP

- Unshielded Twisted Pair (UTP)
 - —Ordinary telephone wire
 - -Cheapest
 - -Easiest to install
 - —Suffers from external EM interference
- Shielded Twisted Pair (STP)
 - —Metal braid or sheathing that reduces interference
 - —More expensive
 - -Harder to handle (thick, heavy)

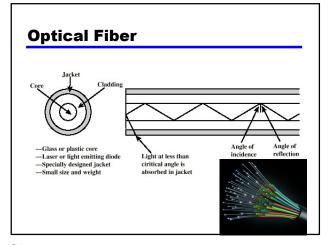

14

UTP Categories

- - —up to 16MHz
 - Voice grade found in most offices
- Twist length of 7.5 cm to 10 cm
- Cat 4
- —up to 20 MHz
- Cat 5
 - —up to 100MHz
 - Commonly pre-installed in new office buildings
 Twist length 0.6 cm to 0.85 cm
- Cat 5E (Enhanced) –see tables
- Cat 6
- Cat 7

	Comparison of Shielded and Unshielded Twisted Pair						
	Attenuation (dB per 100 m)			Near-end Crosstalk (dB)			
Frequency (MHz)	Category 3 UTP	Category 5 UTP	150-ohm STP	Category 3 UTP	Category 5 UTP	150-ohm STP	
1	2.6	2.0	1.1	41	62	58	
4	5.6	4.1	2.2	32	53	58	
16	13.1	8.2	4.4	23	44	50.4	
25	-	10.4	6.2	-	41	47.5	
100	_	22.0	12.3	_	32	38.5	
300	_	_	21.4	_	_	31.3	

Twisted Pair Categories and Classes					
	Category 3 Class C	Category 5 Class D	Category 5E	Category 6 Class E	Category 7 Class F
Bandwidth	16 MHz	100 MHz	100 MHz	200 MHz	600 MHz
Cable Type	UTP	UTP/FTP	UTP/FTP	UTP/FTP	SSTP
Link Cost (Cat 5 =1)	0.7	1	1.2	1.5	2.2


Coaxial Cable Applications

- Most versatile medium
- Television distribution
 - -Ariel to TV
 - —Cable TV
- Long distance telephone transmission
 - —Can carry 10,000 voice calls simultaneously
 - —Being replaced by fiber optic
- Short distance computer systems links
- · Local area networks

19

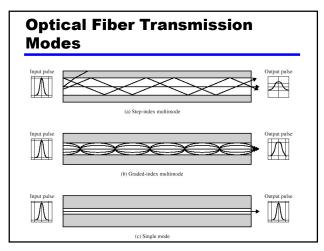
Coaxial Cable - Transmission Characteristics

- Analog
 - -Amplifiers every few km
 - -Closer if higher frequency
 - —Up to 500MHz
- Digital
 - -Repeater every 1km
 - —Closer for higher data rates

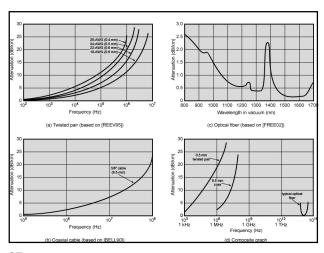
Optical Fiber - Benefits

- Greater capacity
 - —Data rates of hundreds of Gbps
- Smaller size & weight
- Lower attenuation
- · Electromagnetic isolation
- Greater repeater spacing
 - -10s of km at least

22


Optical Fiber - Applications

- Long-haul trunks
- Metropolitan trunks
- Rural exchange trunks
- Subscriber loops
- LANs


23

Optical Fiber - Transmission Characteristics

- Act as wave guide for 10¹⁴ to 10¹⁵ Hz
 - —Portions of infrared and visible spectrum
- Light Emitting Diode (LED)
 - -Cheaper
 - —Wider operating temp range
 - —Last longer
- Injection Laser Diode (ILD)
 - —More efficient
 - -Greater data rate
- Wavelength Division Multiplexing

Frequency Utilization for Fiber Applications					
Wavelength (in vacuum) range (nm)	Frequency range (THz)	Band label	Fiber type	Application	
820 to 900	366 to 333		Multimode	LAN	
1280 to 1350	234 to 222	S	Single mode	Various	
1528 to 1561	196 to 192	С	Single mode	WDM	
1561 to 1620	185 to 192	L	Single mode	WDM	

Wireless	Transmission
Frequenc	ies

- 2GHz to 40GHz
 - —Microwave
 - -Highly directional
 - —Point to point
 - —Satellite
- 30MHz to 1GHz
 - —Omnidirectional
 - -Broadcast radio
- 3 x 10¹¹ to 2 x 10¹⁴
 - —Infrared
 - —Local

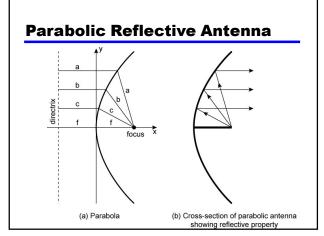
Antennas

- Electrical conductor (or system of..) used to radiate electromagnetic energy or collect electromagnetic energy
- Transmission
 - Radio frequency energy from transmitter
 - Converted to electromagnetic energy

 - By antenna
 Radiated into surrounding environment
- Reception
 - Electromagnetic energy impinging on antenna
 - Converted to radio frequency electrical energy
 - Fed to receiver
- Same antenna often used for both

29

Radiation Patter


- · Power radiated in all dire
- Not same performance
- Isotropic antenna is (the
 - -Radiates in all directions
 - -Gives spherical radiation

ections in all directions		_	
	ı		
		_	
eoretical) point in space equally		_	
pattern			
		_	
		_	
		_	
		_	

Parabolic Reflective Antenna

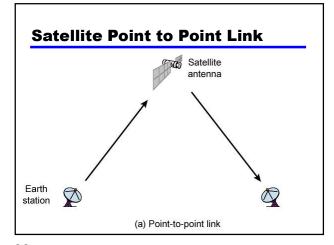
- · Used for terrestrial and satellite microwave
- Parabola is locus of point equidistant from a line and a point not on that line
 - —Fixed point is focus
 - Line is directrix
- Revolve parabola about axis to get paraboloid
 - Cross section parallel to axis gives parabola
 - —Cross section perpendicular to axis gives circle
- Source placed at focus will produce waves reflected from parabola in parallel to axis
 - Creates (theoretical) parallel beam of light/sound/radio
- On reception, signal is concentrated at focus, where detector is placed

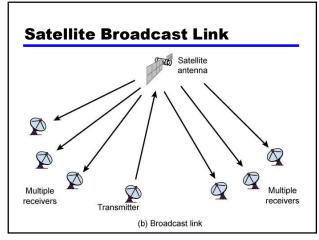
31

32

Antenna Gain

- Measure of directionality of antenna
- Power output in particular direction compared with that produced by isotropic antenna
- Measured in decibels (dB)
- Results in loss in power in another direction
- Effective area relates to size and shape
 - -Related to gain


Terrestrial Microwave


- Parabolic dish
- Focused beam
- · Line of sight
- Long haul telecommunications
- Higher frequencies give higher data rates

34

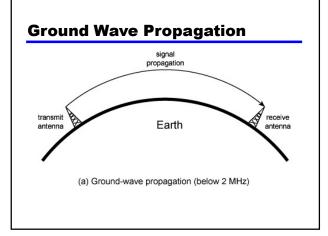
Satellite Microwave

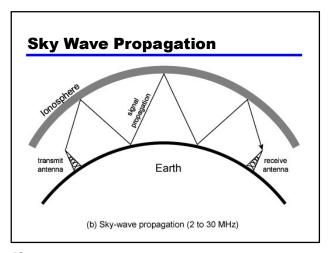
- · Satellite is relay station
- Satellite receives on one frequency, amplifies or repeats signal and transmits on another frequency
- Requires geo-stationary orbit
 - -Height of 35,784km
- Television
- Long distance telephone
- Private business networks

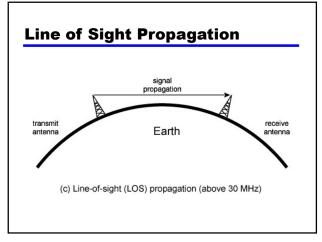
Broadcast Radio

- Omnidirectional
- FM radio
- UHF and VHF television
- Line of sight
- Suffers from multipath interference
 —Reflections

38

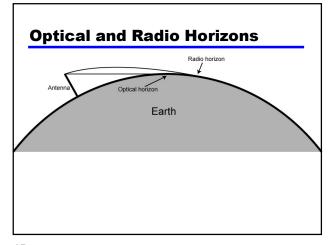

Infrared


- Modulate noncoherent infrared light
- Line of sight (or reflection)
- Blocked by walls
- e.g. TV remote control, IRD port


Wireless Propagation

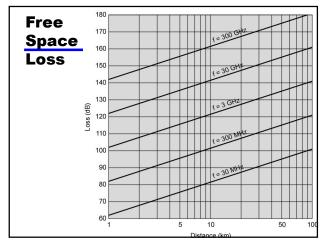
- Signal travels along three routes
 - Ground wave
 - · Follows contour of earth
 - Up to 2MHz
 - AM radio
 - —Sky wave
 - Amateur radio, BBC world service, Voice of America
 - Signal reflected from ionosphere layer of upper atmosphere
 - (Actually refracted)
 - —Line of sight
 - Above 30Mhz
 - May be further than optical line of sight due to refraction
 - More later...

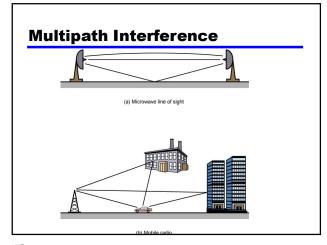
40



Refraction

- Velocity of electromagnetic wave is a function of density of material
 - $-\sim3 \times 10^8$ m/s in vacuum, less in anything else
- As wave moves from one medium to another, its speed changes
 - Causes bending of direction of wave at boundary
 - Towards more dense medium
- Index of refraction (refractive index) is
 - Sin(angle of incidence)/sin(angle of refraction)
 - Varies with wavelength
- May cause sudden change of direction at transition between media
- May cause gradual bending if medium density is varying


 - Density of atmosphere decreases with height
 Results in bending towards earth of radio waves


Line of Sight Transmission

- Free space loss
 - Signal disperses with distance
 - Greater for lower frequencies (longer wavelengths)
- Atmospheric Absorption
 - —Water vapour and oxygen absorb radio signals
 - —Water greatest at 22GHz, less below 15GHz
 - —Oxygen greater at 60GHz, less below 30GHz
 - Rain and fog scatter radio waves
- Multipath
 - Better to get line of sight if possible
 - Signal can be reflected causing multiple copies to be received
 - May be no direct signal at all
 - May reinforce or cancel direct signal
- Refraction
 - May result in partial or total loss of signal at receiver

46

47

Required Reading	
• Stallings Chapter 4	
	-
	-