Programmable Logic Controllers, Industrial Field Buses and SCADA. Presented By: Engr. Muhammad Aamir

1

3

1

0	utling	
	utime	
1.	Significance of the Topic	
2.	Three Parts of Presentation	
3.	Programmable Logic Controllers	
4.	Industrial Field Buses	
5.	CAN, DeviceNet, Foundation Field Bus	
6.	Modbus and Profibus	
7.	Profibus Network (ProfiNet)	
8.	SCADA and its Applications	
9.	Conclusion	
(1 0	References	

2

Significance of topic...

- Programmable Logic Controllers, Industrial buses and SCADA are key areas for Automation solutions.
- Solutions for factory automation, process automation, safety applications, and the entire range of drive technology are available with PLC, SCADA and buses.

...Significance of topic

- The current trend is Totally Integrated Automation
- Totally Integrated Automation allows a perfect interplay of all integrated automation components
- This presentation will focus on practical aspects of PLCs, SCADA and Industrial buses

4

5

4

5

Programmable Logic Controllers

- A Programmable Logic Controller [1] is a micro-controller based device which is specifically designed to operate in the industrial environment that can be rather harsh.
- A PLC package is capable of monitoring status of inputs connected with it to take decisions according to the control program, and manipulates its outputs to achieve Automation.
- Basically it is an alternate solution to the previously under taken Wired Logic Control (WLC) technology but it can accommodate more advanced options.

...Basic PLC operation

- Output modules convert control instructions from the CPU into a digital or analog signal that can be used to control various field devices (actuators).
- A programming device is used to input the desired instructions.
- These instructions determine what the PLC will do for a specific input.
- An operator interface device allows process information to be displayed and new control parameters to be entered.

8

Advantages of PLCs...

- The same (WLC) and even additional complicated tasks can be done with a PLC.
- Wiring to connect field devices and contacts of relays/contactors is made in the control program saved in the memory of PLC.
- Transforming the functions and rectifying errors are much easier to work out.
- It is more simple and easy to develop and modify a control program in a PLC than making a circuit by wiring then re-wiring it for modifications.
- Another significant advantage is smaller physical size as compared to hard-wire based solutions.

...Advantages of PLCs

- Speed of operation is quite fast so it is much more easy and fast to cater modifications.
- PLCs are incorporated with diagnostics and priority functions
- Diagnostics are accessible from a central location
- Applications can be instantaneously recognized and documented
- Applications can be reproduced faster and relatively lower cost than WLC based systems.

13

PLC Programming Packages

- A PLC program may contain at least one or more user written instructions which are used to accomplish a task. Developing a PLC program is equivalent to build a set of instructions to obtain desired sequence of operation.
- There are several programming packages available including:
- 1. Ladder logic 2. Statement list and 3. Function block diagrams [7].

14

Industrial Field Buses

Some widely used Field bus standards are:

- CAN (The Controller Area Network)
- DeviceNet
- Foundation Field Bus
- ModBus
- Profibus (Profibus PA, Profibus DP)

15

13

CAN (The Controller Area Network)...

Supporters Standard Topology Access Medium Distance Repeaters Encoding User bits in frame Mastership Mastership redundancy Link layer control Upper layers Application Protocols Chips	Automotive industry, Honeywell, Allen-Bradley, Late 1980s ISO 11898 (High Speed), ISO 11519 (Low Speed) Bus terminated on both sides. twisted -pair cable. 40m @ 1 Mb/s (A); 400m @ 100kb/s (B); 1000m @ 25kb/s unspecified (useless) NRZ, bit stuffing 64 multi-master, 12-bit bisection, bit-wise arbitration none (use device redundancy) connectionless (command/reply/acknowledgement) no transport, no session, implicit presentation CAL, SDS, DeviceNet (profiles) comes free with processor (Intel: 82527, 8xC196CA; Philips: 82C200, 8xC592;	(B)
	Motorola: 68HC05X4, 68HC705X32; Siemens: SAB-C167	
	16	

...DeviceNet

- Originally formulated by Allen-Bradley .
- DeviceNet is supervised by the Open DeviceNet Vendors Association (ODVA) .
- Basic Bus topology.
- A twisted-pair bus for signal and another twisted-pair bus for power distribution, with signal and power carried in the same cable (protected cable).
- Live placement of devices without terminating power from the network.
- Optically isolated design so externally-powered devices can share bus cable with bus-powered devices. .
- Data rates 125kbps (up to 500m), 250kbps (up to 250m), and 500kbps (up to 100m). Maximum drop length is 6 meters. Up to 64 node addresses on a single network.

- Prioritized, Peer-to-Peer communication based on the non-destructive bit-wise arranged format of CAN protocol.

19

21

Manufacturer-Customer Model for transfer of data

19

20

Flexible options for extension based on device descriptions

ModBus...

- MODBUS Protocol is a messaging arrangement developed by Modicon in 1979.
- It is used to set up master-slave/client-server communication between intelligent field devices.
- It is a by default standard which is purely open and the mainly used network protocol used for industrial manufacturing.
- MODBUS devices communicate using a masterslave method in which only master can initiate queries.

22

23

 Standard MODBUS networks utilize one of two types of transmission modes:

22

23

ProfiNet...

- PROFINET is the open Industrial Ethernet standard
- This standard is specified in IEC 61158 [18] and IEC 61784 [19] compatible with Ethernet (IEEE802.3)
- It allows existing fieldbus systems such as PROFIBUS PA, PROFIBUS DP, AS-Interface, INTERBUS, and DeviceNet to be included without modifying existing field devices.
- This characteristic insures that the investments of plant operators, machine and plant manufacturers, and device manufacturers are all protected.

26

...ProfiNet

- The PROFINET model is based on a modular concept which permits the user to select the required functionality.
- PROFINET CBA is appropriate for component based machine-to-machine communication using TCP/IP and also for real time communication in modular plant manufacturing.
- PROFINET I/O illustrates an I/O data view on distributed I/O. PROFINET I/O features Real Time (RT) communication and Isochronous Time real-time (IRT) communication with the distributed Input/Output.

27

29

SCADA

- SCADA is a short form for Supervisory Control and Data Acquisition.
- SCADA systems are utilized to monitor and control a plant or equipment in industries
- Major application areas include energy, oil and gas refining, telecommunications, water and waste control, and transportation.
- These systems include the transfer of data between a SCADA Master Terminal Unit (MTU) and a number of Remote Terminal Units (RTUs) and/or Programmable Logic Controllers (PLCs), and the MTU to the operator workstation.

Components of SCADA...

SCADA systems consist of:

- One or more field data interface devices which are usually termed as RTUs, or PLCs
- A communications system (means of telemetry) utilized to transmit data between field data interface devices and control units and the computers in the MTU of SCADA.
- A central host computer server or collection of servers, sometimes called a SCADA Center, master station, or Master Terminal Unit (MTU)
- A collection of standard and/or custom software, sometimes called Human Machine Interface (HMI) software

31

32

SCADA Applications...

Public or Private Infrastructure:

- Water treatment and distribution
- Waste water collection and treatment
- Electrical power transmission and distribution
- Oil and gas pipeline monitoring and control

34

34

References...

- [1] John W. Webb, Ronald A. Reis, "Programmable Logic Controllers: Principles and Applications", 5th Edition, 2002, Prentice Hall.
- [2] Siemens Step 2000 Self Study Course, "Basics of PLCs", available at www.sea.siemens.com
- [3] Denis Collins, Eamon Lane, "Programmable Controllers: A Practical Guide", First Edition, 2000, McGraw-Hill Book Company.
- [4] Antonio Sorin Tasu, "Programmable Logic Controller", Romanian Journal in Physics, 2004.
- [5] James A. Regh, Glenn J. Sartori, "Programmable Logic Controllers", Second Edition, 2009, Prentice Hall.
- [6] Jon Stenerson, "Fundamentals of Programmable Logic Controllers, Sensors, and Communications", Third Edition, 2005, Prentice Hall. [7] Hans Berger, "Automating with STEP-7 with LAD and FBD", Fourth
- Edition, 2005, Siemens Technical Publications.
- [8] Hans Berger, "Automating with SIMATIC", Third Edition, 2006, Siemens Technical Publications.

40

....References

- [9] Daniel White Sexton, "Programmable Logic Controller Computer System with Micro Field Processor and Programmable Bus Interface Unit", U.S. Patent 5978593, Nov 02, 1999.
- [10] Moon. I, "Modeling programmable logic controllers for logic verification", <u>Control Systems Magazine, IEEE</u>, 1994.

- verification", <u>control systems Magazine, IEEE</u>, 1994.
 [11] Learn PLC online at: <u>www.plcs.net/contents</u>, 1994.
 [12] Dr. Moustafa Elshafei, "Field Buses", Chapter 6 available online at: <u>www.elshafei.com/elshafei_ch6_v4.pdf</u>
 [13] W.Bolton, Programmable Logic Controllers, 4th Edition, North Calolina: Elsevier Newnes, 2006.
 [14] SIMATIC S7-200 Programmable Controller System Manual, Order Number: 6ES7298-8FA24-8BH0, 2007, Siemens AG.
 [15] Automation System Contro
- [15] Automation System Centre, "Introduction to PROFIBUS", Manchester Metropolitan University.
 [16] <u>Tovar, E. Vasques, F.</u> "Real-time fieldbus communications using Profibus networks", Industrial Electronics, IEEE Transactions, 1999.
- [17] Common Questions about Profibus available online at: www.profibus.com

41

40

41

...References

- [18] IEC: IEC 61158 Digital data communications for measurement and control Fieldbus for use in industrial control systems, available at
- [19] IEC: IEC 61784 Digital data communication for measurement and control, available at <u>www.iec.ch</u> [20] ProfiNet System Description, available online at <u>www.profinet.com</u>
- [21] Josef Weigmann, Gerhard Kilian, "Decentralization with PROFIBUS DP/DPV1", Second Edition, 2003, Siemens Technical Publications.
- [22] Raimon Second Edition, 2003, Steinens reclinical Publications.
 [23] Raimon Pigan, Mark Metter, "Automating with PROFINET", 2006, Siemens Technical Publications.
 [23] Feld Joachim, "PROFINET- Scalable Factory Communication for All Applications", in Proceedings 2004, IEEE International Workshop on Factory Communication.
- [24] Stuart A.Buyer, SCADA: Supervisory Control and Data Acquisition, 3rd ed, North Calolina: ISA, 2004, pp. 9-21
- [25] White paper on SCADA produced by Motorola, 2007.

...References

- [26] Technical Information Bulletin on SCADA by Communication Technologies, Inc.
- [27] IEEE Recommended Practice for Data Communications Between Remote Terminal Units and Intelligent Electronic Devices in a Substation, IEEE Std 1379- 2000 (Revision of IEEE Std 1379-1997), 21 September 2000
- [28] Aamir, M, Mahmood, A. "Performance Analysis of Wide Area Operation, Control and protection High Scale SCADA System" IEEE Electric Power Conference, 2008.

43

43

Ç

