
Lecture #5
TECH 3233

ver 2.0

Hand compiling is the process that take an assembly program (using OP Codes) and converts them into

the values stored in memory.

Lets take the program:

; InClass1.asm
;
; Created: 2/6/2020 7:50:40 AM
; Author : dekohn
;

start:

 LDI R20, 5
 LDI R21, 2
 ADD R20, R21
 ADD R20, R21
 STS 0x120, R20

L1: JMP L1

The lines starting with ; are comments. Start: and L1 are labels (used by the compiler for loops and if, so

we will start with LDI R20,5.

Looking at the AVR Instruction Set Manual (Available from the class website). Looking up the

information on the LDI instruction, we see the following:

Since it shows, LDI Rd,K and our instruction is LDI R20, 5……that means we replace d with 20 (dec) and K

gets replaced with 5 (dec).

Looking at the 16-bit opcode we now fill in the K’s and the d’s. So K is 5 (which is also 0x05 hex), so the

first group of K’s (Most Significant Nibble (MSN)) gets filled in with zeros and the 2nd group (Least

Significant Nibble (LSN)). Since the op code sheet shows d is in the range of 16 ≤ d ≤ 31 and we only have

4 bits for d….we need to subtract 16 from 20 to get the value of 4…which we convert to binary and put

into d.

So we end up with:

From datasheet 1110 KKKK dddd KKKK

Binary 1110 0000 0100 0101

Hex E 0 4 5

So for that instruction 0xE045 goes into memory.

For the next instruction LDI R21, 2 we follow the same process (0x02 goes into K’s and 21-16=5 goes into

d’s)

From datasheet 1110 KKKK dddd KKKK

Binary 1110 0000 0101 0010

Hex E 0 5 2

For the ADD instructions we once again look up the Op Code in the AVR Instruction Set Manual

For the instruction ADD R20, R21 with the OP Code info above, d will be replaced by 20dec and r will be

replaced by 21 dec. Note the range for d and r is 0 ≤ d ≤ 31 and 0 ≤ r ≤ 31, so we need 5 bits to represent

the full register values….hence why there is an r and d by themselves in one of the nibbles (as seen

below). This would be the Most Significant Bit (MSB) of the register number (24 or 16 bit). So now our

table looks like:

From datasheet 0000 11rd dddd rrrr

Binary 0000 1111 0100 0101

Hex 0 F 4 5

For the next instruction, ADD R20, R21 it is the same exact hex value.

Next the STS 0x120, R20 instruction is done. Looking at the Op Code Sheet:

Note that this instruction is 32 bits and k is the full 16bit hex value and the r (shown as d’s in the table –

probably a misprint) is the register (using 5 bits). So our table would be:

From datasheet 1001 001r dddd 0000

Binary 1001 0011 0100 0000

Hex 9 3 4 0

From datasheet kkkk kkkk kkkk kkkk

Binary 0000 0001 0010 0000

Hex 0 1 2 0

So 0x9350 and 0x0120 would go into memory.

The final instruction is the L1: Jmp L1 and the Op Code Sheet is as follows:

 Again this is a 32 bit instruction, but it is not obvious what values we use as k’s.

To understand what value we need, we have to understand what an Assembly Language Program (ASM)

does with labels like “L1:”. When a compiler runs, it not only does the conversion we have done above,

but it also counts the number of memory locations each instruction takes. When it see a label, it marks

down the memory location were the instruction it points to is stored, and anywhere it sees the label

“L1” used, it replaces it with that value (or in some cases, it uses that to calculate how many memory

locations it has to go forward or revers in the code…this is known as a relative jump).

So far we have:

000000 e045 LDI R20, 5
000001 e052 LDI R21, 2
000002 0f45 ADD R20, R21
000003 0f45 ADD R20, R21
000004 9340 0120 STS 0x120, R20

 ASM Code

 Machine Language (what is in memory)

 Memory Location (counting by 16bits)

So the next memory location would be 000006 (since STS is a 32 bit instruction). Note addresses are 6

nibbles (6 hex characters) and only 0-3 are used for the first nibble (two bits). Hence the two k’s that are

by themselves.

So for this instruction we would get:

From datasheet 1001 010k kkkk 110k

Binary 1001 0100 0 1100

Hex 9 4 0 C

From datasheet kkkk kkkk kkkk kkkk

Binary 0000 0000 0000 0110

Hex 0 0 0 6

So our completed program will be:

000000 e045 LDI R20, 5
000001 e052 LDI R21, 2
000002 0f45 ADD R20, R21
000003 0f45 ADD R20, R21
000004 9340 0120 STS 0x120, R20

000006 940c 0006 L1: JMP L1

Hand Tracing is the process in which you act as the CPU and do each instruction in order and show how

the registers, and memory locations change as the program progresses.

So starting with LDI R20,5 we would have

Reg / Mem Value

R20 5

Next is the LDI R21,2

Reg / Mem Value

R20 5

R21 2

Next is ADD R20,R21. Here we note that in the Op Code sheet, we see:

This tells us the Rd is added to Rr and then STORED IN Rd, so after the instruction R20 is overwritten by

the answer (note we cross off the previously stored value and replace it with the new value:

Reg / Mem Value

R20 5 7

R21 2

The next instruction does the same ADD R20,R21:

Reg / Mem Value

R20 5 7 9

R21 2

And lastly the STS 0x120,R20 stores the value in R20 in memory location 0x120

Reg / Mem Value

R20 5 7 9

R21 2

0x120 9

.

L1: Jmp L1 has no effect on Registers or the memory location, so the table (above) is the final answer).

