
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
1

\qquad
\qquad

- Decimal has digits 0-9.
\qquad day lives.
\qquad
\qquad
\qquad
\qquad
2

\qquad
- Binary has digits 0 and 1 . \qquad
- Commonly used in digital logic, computers and networking.

$$
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline 128 & 64 & 32 & 16 & 8 & 4 & 2 & 1 \\
\hline 2^{7} & 2^{6} & 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0} \\
\hline & & & & & & & \\
\hline
\end{array}
$$

Example Decimal to Binary Conversion

- Convert 100 to binary using weighting factors.

128	64	32	16	8	4	2	1
2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

4

- Convert 200 to binary using weighting factors.

128	64	32	16	8	4	2	1
2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
5
Convert 100 to binary

| Convert 100 to |
| :--- | :--- | :--- | :--- |
| binary using |
| division method. | | Division | Quotient | Remainder |
| :--- | :--- | :--- |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |

6

7
Convert 11010010_{2} to decimal

128	64	32	16	8	4	2	1
2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
8

Labeling a Binary Number

- We need a way to tell a computer the difference between $1010{ }_{10}$ and 1010_{2}
- In textbooks we use subscripts (like above)
- In this class a leading 0b sign will show a \qquad binary value.
- Some other methods include a leading \% \qquad or a B at the end.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
10

Binary Numbers (Definitions)

\qquad

- Similarly the nibble to the left is the High Nibble

- The nibble to the right is the Low Nibble

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
11

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

12

- Most commonly used in computers and \qquad networking (error messages in windows and MAC addresses) \qquad
- Why base 16 ? Because 4 bits can be converted to decimal digits 0 -> 15 .

8	4	2	1
2^{3}	2^{2}	2^{1}	2^{0}

13
Convert 100 to Hex via Binary.

128	64	32	16	8	4	2	1
2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
8	4	2	1	8	4	2	1

\qquad
\qquad

14

Example Decimal to Hex

 ConversionConvert 200 to Hex via Binary.

128	64	32	16	8	4	2	1
2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
8	4	2	1	8	4	2	1

\qquad
\qquad

Example Hex To Decimal

 GonversionConvert A5 Hex To Decimal.

8	4	2	1	8	4	2	1	
128	64	32	16	8	4	2	1	

Convert 7D Hex To Decimal.

8	4	2	1	8	4	2	1				
128	64	32	16	8	4	2	1				

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
17

- Hex is easier to read than binary and it is less likely to introduce errors (try copying down a list of 108 bit \qquad binary digits and do the same with the same 10 values represented in HEX) \qquad
- Each hex digits requires one nibble (four bits) to store in the computer's binary memory (easy to translate bin to/from hex)
\qquad
\qquad
\qquad

Labeling a Binary Number

- We need a way to tell a computer the difference between 10_{10} and 10_{16}
- In textbooks we use subscripts (like above)
- In this class, Hex will be represented by a \qquad leading " $0 x$ " (0x10). Windows also uses this method. \qquad
- In some programs a leading \$ sign will show a Hex value (0x10) \qquad
\qquad
19

\qquad
\qquad
\qquad
\qquad
Other ways to store data in bits

20

Binary Coded Decimal

- Each Decimal Digit is represented by its 4 bit binary equivalent.
\qquad
- EG

145		
1	4	5
0001	0100	0101

- NOTE: This is not BINARY (145 dec to binary would be 10010001)

- We can use a techniques like bit fields and packed data to store information like the date:

$\begin{array}{llllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$ $M / M / M / M|D D D D D Y| Y|Y| Y|Y| Y$

- We know the month can be represented by values 1-12 we use 4 bits (which can represent values 0-15)
-The largest month has 31 days so we use 5 bits (which can represent values $0-31$)
-Here we represent the year using the last two digits of the year so 7 bits are used (which can represent values 0-127)

Negative Numbers

Two's Complement

- used to represent both positive and negative numbers \qquad
- Give up MSB as a sign bit (1 -> negative)
- positive numbers are the same as they \qquad would be without the two's complement representation.

Examples: $01101_{2}=13_{10}$
$11101_{2}=-3_{10}$

23

\qquad
\qquad

Method 2 - Shortcut
(example $00110_{2}=6_{10} \rightarrow$ Convert to -6 in 2 's complement)

- Start at least significant bit (the farthest to the right), and copy 0 s until you get to a 1 (also copy the 1): 10
- Then flip the rest of the bits:11010
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
25

Why 2's Comp?

- Only one form of 0 .

Twos complement Decimal

- Easy to subtract:

Just Add!
$0100\left(4_{10}\right)$
$+1101\left(-3_{10}\right)$
$0001\left(1_{10}\right)$

0111	7
0110	6
0101	5
0100	4
0011	3
0010	2
0001	1
0000	0
1111	-1
1110	-2
1101	-3
1100	-4
1011	-5
1010	-6
1001	-7
1000	-8

\qquad
\qquad
\qquad
\qquad It works!
\qquad
\qquad
26

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

27

Floating Point Numbers

- Computers use IEEE Standard 754 for storing Floating Point Numbers in Binary
- Values are stored in 3 bit fields
- Sign Bit
- Exponent Field
- Mantissa Field
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
28

Floating Point Numbers

- Sign Bit
- 0 denotes a positive number
- 1 denotes a negative number \qquad
\qquad
\qquad
\qquad
\qquad
29

Floating Point Numbers

- Exponent
- Can represent both positive and negative exponents.
- A bias is added to the actual exponent in order to get the stored exponent. \qquad
- For IEEE single-precision floats, this value is 127. Thus,
- an exponent of zero means that 127 is stored in the exponent field.
- A stored value of 200 indicates an exponent of (200-127), or 73.
- Note: exponents of -127 (all 0s) and +128 (all 1s) are reserved for special numbers.
- The Mantissa (aka significand)
- represents the precision bits of the number. It is composed of an implicit leading bit and the fraction bits.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
31

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
32

\qquad
- Computers store instructions, called \qquad Operation Codes (or Op Codes) in memory as binary values.
- Each Microprocessor uses a different set of op codes. \qquad
- Example \qquad
- 0x1B tells a 68 HC 11 to Add two values
- The same value tells an 80×86 processor to subtract \qquad two numbers

35

\qquad
\qquad
\qquad
\qquad
\qquad

