

Decimal – Base 10

- Decimal has digits 0 9.
- Number system we commonly use in our day to day lives.

Hundreds	Tens	Ones
10 ²	10 ¹	10 ⁰

2

Binary – Base 2

- Binary has digits 0 and 1.
- Commonly used in digital logic, computers and networking.

128	64	32	16	8	4	2	1
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2º

12	Ex	amp	le D	ecim		Bin	_
					Cor	ivers	ioi
	, weigh	0 to bir	nary	8	4	2	1
128	64	32	16	8	4	2	1
		05	24	03	-2	THE RESERVE OF THE PERSON NAMED IN	-0
2 ⁷	2 ⁶	2 ⁵	2	2 ³	2 ²	2 ¹	20
2 ⁷	2 ⁶	2°	2.	2°	22	2 ¹	2°

	14	Ex	amp	le D	ecim		o Bir	
•	using factor	weigh	· · · · ·			I		
	128	64	32	16	8	4	2	1
	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 °
							1 1 1	WA.

	Conve		o binary
Convert 100 to binary using division method.	Division	Quotient	Remainder

8

Labeling a Binary Number

- We need a way to tell a computer the difference between 1010₁₀ and 1010₂
- In textbooks we use subscripts (like above)
- In this class a leading 0b sign will show a binary value.
- Some other methods include a leading % or a B at the end.

1		lex –	Base	16	
Base 10	Base2	Base 16	Base 10	Base2	Base
0	0000	0	8	1000	8
1	0001	1	9	1001	9
2	0010	2	10	1010	Α
3	0011	3	11	1011	В
4	0100	4	12	1100	С
5	0101	5	13	1101	D
6	0110	6	14	1110	E
7	0111	7	15	1111	F

Hex – Base 16

- Most commonly used in computers and networking (error messages in windows and MAC addresses)
- Why base 16? Because 4 bits can be converted to decimal digits 0 -> 15.

8	4	2	1
2 ³	2 ²	21	2 ⁰
			YA
		1.18	

13

Example Decimal to Hex Conversion

Convert 100 to Hex via Binary.

128	64	32	16	8	4	2	1
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
						~~~	
8	4	2	1	8	4	2	1
							Dy A

14



# **Example Decimal to Hex Conversion**

#### Convert 200 to Hex via Binary.

128	64	32	16	8	4	2	1
27	2 ⁶	<b>2</b> ⁵	2 ⁴	<b>2</b> ³	<b>2</b> ²	2 ¹	2º
						===	
8	4	2	1	8	4	2	1









## Labeling a Binary Number

- We need a way to tell a computer the difference between 10₁₀ and 10₁₆
- In textbooks we use subscripts (like above)
- In this class, Hex will be represented by a leading "0x" (0x10). Windows also uses this method.
- In some programs a leading \$ sign will show a Hex value (0x10)

19



Other ways to store data in bits

20



## **Binary Coded Decimal**

- Each Decimal Digit is represented by its 4 bit binary equivalent.
- EG

145

1 4 5

0001 0100 0101

 NOTE: This is not BINARY (145 dec to binary would be 10010001)



#### Time

 We can use a techniques like bit fields and packed data to store information like the date:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 M M M M D D D D D Y Y Y Y Y Y

•We know the month can be represented by values 1-12 we use 4 bits (which can represent values 0-15).

•The largest month has 31 days so we use 5 bits (which can represent values 0-31)

*Here we represent the year using the last two digits of the year so 7 bits are used (which can represent values 0-127)

22



## **Negative Numbers**

#### Two's Complement

- used to represent both positive and negative numbers
- Give up MSB as a sign bit (1 -> negative)
- positive numbers are the same as they would be without the two's complement representation.

Examples:  $01101_2 = 13_{10}$  $11101_2 = -3_{10}$ 

From: Chris Grapp - University o

23



## Converting to Two's Comp

#### Method 1

(example  $00110_2=6_{10} \rightarrow \text{Convert to -6 in 2's complement})$ 

- Flip all the bits
  - 11001 (this is the 1's complement)
- Add 1
  - **o** 11010



	Why 2's Comp
<ul> <li>Only one form of 0.</li> </ul>	Two's Complement   Decimal
Only one form of o.	0111 7
	0110 6
	0101 5
Easy to subtract:	0100 4
Just Add!	0011 3
*	0010 2
0100 ( 4 ₁₀ )	0001 1
+1101 (-3 ₁₀ )	0000 0
+1101 (-310)	1111 -1
	1110 -2
0001 ( 1 )	1101 -3
0001 ( 1 ₁₀ )	1100 -4
It works!	1011 -5
	1010 -6
	1001 -7
	1000 -8

	Why 2's Comp	?
	Two's Complement   Decimal	
Just Add!	0111 7	
•	0110 6	
1011 (-5 ₁₀ )	0101 5	
+0010 ( 2 ₁₀ )	0100 4	
10070 ( -10)	0011 3	
	0010 2	
1101 (-3 ₁₀ )	0001 1	
It works!	0000 0	
it works.	1111 -1	
	1110 -2	
	1101 -3	
	1100 -4	
	1011 -5	
	1010 -6	
	1001 -7	
	1000 -8	



## Floating Point Numbers

- Computers use IEEE Standard 754 for storing Floating Point Numbers in Binary
- Values are stored in 3 bit fields
  - Sign Bit
  - Exponent Field
  - Mantissa Field



28



## Floating Point Numbers

- Sign Bit
  - 0 denotes a positive number
  - 1 denotes a negative number

29



## Floating Point Numbers

- Exponent
  - Can represent both positive and negative exponents.
  - A bias is added to the actual exponent in order to get the stored exponent.
  - For IEEE single-precision floats, this value is 127. Thus,
    - an exponent of zero means that 127 is stored in the exponent field.
    - A stored value of 200 indicates an exponent of (200-127), or 73.
  - Note: exponents of -127 (all 0s) and +128 (all 1s) are reserved for special numbers.









#### **ASCII**

- Broken into 4 groups of 32 characters
  - Group 1 (0x00 to 0x1F) Non Printable control characters
  - Group 2 (0x20 to 0x3F) punctuation, special characters and numeric digits
  - Group 3 (0x40 to 0x5F) Letters 'A..Z' and some other characters
  - Group 4 (0x60 to 0x7F) Letters 'a..z' and some other characters.
- http://asciitable.com

34



## Op Codes

- Computers store instructions, called Operation Codes (or Op Codes) in memory as binary values.
- Each Microprocessor uses a different set of op codes.
- Example
  - 0x1B tells a 68HC11 to Add two values
  - The same value tells an 80x86 processor to subtract two numbers

35



#### Context!

• In a computer a value stored in memory cannot be interpreted unless it is put in context by a program!

