
TECH 3233

Lab #3

Atmel, ASM and C
Ver 1.02

Purpose: To familiarize students with how a C program is compiled into Machine Language and

how it is placed in memory.

Discussion: As we learned in Lab #1 and #2, data can be placed into and retrieved from

memory. This week we will type in our first C program in Atmel Studio 7.0, compile it and then

send it to the Arduino board. We will also look at how that program is stored in memory (in

machine language).

When we type in a C program, the program follows the rules of the C programming language

with key words and phrases (ie while () being a loop). When we build or COMPILE a program,

these key words are translated to what the CPU understands (Machine language). To send code

over to the Arduino, this machine language is put into a .HEX file.

The hex file contains the code, data and additional information that helps the CPU place it in

memory and make sure the code has been sent correctly.

Lets take a look at an example HEX file1:

Each line of the hex file can be broken down into the following parts:

The “Data” is actually what is stored in memory. The Start Code, Byte Count, Record Type and

Checksum are used to direct the receiving CPU on how to handle the Data and to help the CPU

determine if the data was received correctly. The address is the location (address) to place the

information.

We will use the above latter in the experiment.

1 https://en.wikipedia.org/wiki/Intel_HEX

https://en.wikipedia.org/wiki/Intel_HEX

Procedure:

1. Open Atmel Studio 7.0 and do FILE | NEW | Atmel Start Project. This will start a project

wizard. Select the IC that is on the Arduino Uno Board (atmega328p-pu), and hit the

“Create New Project” button. (you can configure some hardware on this page before

hitting the button, but for this lab we do not need to do so).

2. On the next screen we can do more configuration. We do need to change one item, since

the IC defaults to 8MHz and the Arduino board uses a 16MHz Crystal. To do this click

on the Clock Icon . On the screen look for the Input Clock box and hit the settings

icon within the box . Now change the value of the “Input Clock Frequency” to

16000000 (16MHz) and click close. Now hit “Generate Project” on the bottom of the

window.

3. A screen will pop up. Give the project the name “Lab3”. If you wish to save the file to

your thumb drive, change the location now by browsing to the directory you wish to use.

This will create the basic structure of your project within a directory called Lab3. Within

that directory will be a file called Lab3.atsln which is the project file.

4. You should now have the following screen:

Off to the right you should have a “Solution Explorer” window. If you do not you can

click VIEW | Solution Explorer to open it. This shows you all the files associated with the

project. The one we are most interested in is within utils and it is called main.c. Double

click on this to open the file.

5. Now type in the following program (note the basic structure will already have been

created by the project wizard):

[note: “(digital pin…” should be a continuation of the previous line”]

6. Once you are finished typing, you need to compile the C program into something the IC

will understand (Machine Language). To do this, go to BUILD | BIULD SOLUTION.

The output window should end with a message saying “Build succeeded” if not, check

your code.

7. Since the code is written for the Arduino, we must send the code over to that IC before

we can test it. In industry, IC’s like the Atmega328p-pu are programmed out of circuit

using a programmer, but since we are using the ATmega on an Arduino board, we are

going to use the USB on the Arduino to send the code to it. To do this we must add an

external tool to Atmel Studio2.

• First Plug in the Arduino Uno to the USB of the computer.

• Find the COM port of the device

• Win10 (opt #1) – right click on Windows Start Icon and select Device

Manage and look under Ports (COM & LPT)

• Win10 (Opt #2 - Device Manager Locked) – search for “PowerShell”

and open. Type in “Get-WMIObject Win32_SerialPort” (no quotes) and

check results for Arduino Uno (Com __)

2 http://www.instructables.com/id/How-to-Load-Programs-to-an-Arduino-UNO-From-Atmel-/

http://www.instructables.com/id/How-to-Load-Programs-to-an-Arduino-UNO-From-Atmel-/

• Win 7 – use Start | Control Panel | Device Manager and look under Ports

(COM & LPT)

Note which COM port it is (you will need that info in a bit)

• Back in Atmel Studio, click on Tools | External Tools and click the Add button

and fill out the form as follows:

• Title: Arduino Uno

• Command*: (click on the icon and browse to C:\Program

Files\Arduino\ then use the search box to find avrdude.exe and double

click on the found file)

• Copy the path up to avr\ (highlight and control C).

• Arguments*: type in the following line:

-v -C "[ctrl-v]etc\avrdude.conf" -p atmega328p -c arduino

-P COM7 -b 115200 -U

flash:w:$(TargetDir)$(TargetName).hex:i

Replace [ctrl-v] with the path from the previous step. Replace COM7

with COM Port found in step 7b. (It is typed as one continuous line)

• Uncheck “Close on Exit” and check “Use Output Window”

• Click OK

* Note – The long strings can be copied and pasted from the class website

(do not copy and paste from PDF…..it will not work!)

8. Now go back to TOOLS and there should be a new menu item called Arduino Uno.

When you click on this, it should send the code to the Arduino board. If successful, the

last line in the output window should be “avrdude.exe done. Thank you.”

9. Is your LED by Digital Pin 13 blinking at about 1 second intervals? If NO ask for help!

10. If it is blinking…..congratulations you have written and executed your first embedded C

program! Demo to the instructor

11. In Atmel Studio, find and print the following files:

• Lab3/utils/main.c

• Lab3/Output Files/Lab3.hex

• Lab3/Output Files/Lab3.lss

12. On the printout of the .hex file, mark the start code, byte count, address, record type, data

and checksum (highlighters work great for this, although underlines and other marking

are acceptable).

13. Lay all three printouts side by side. Find “int main(void)” in the .lss file and have that

printout opened to that page (there is a lot of other “overhead” in the .lss file…we are just

interested in comparing the main in the c and the machine language).

In the .lss file, it shows both the C program AND the machine language (shown both in

Hex and ASM code). Each line starts with the address, followed by a :” find where the

first instruction in main is located in memory…..locate that address in the .HEX file and

circle it.

14. As we did in class, prove the following lines of ASM code and their hex equivalent are

truly the same thing.

 DDRB = 0b00100000; // configure pin 5 of PORTB as output (digital pin 13

on the Arduino Uno)

 8a: 80 e2 ldi r24, 0x20 ; 32

 8c: 84 b9 out 0x04, r24 ; 4

 while(1)

 {

 PORTB = 0b00100000; // set 5th bit to HIGH

 8e: 85 b9 out 0x05, r24 ; 5

|

| (skipped delay)

|

 PORTB = 0b00000000; // set 5th bit to LOW

 a2: 15 b8 out 0x05, r1 ; 5

15. In your own words, how does the C code (shown in grey above) relate to the ASM and to

the Machine Language? Why does the LED Blink?

Submit the 3 printouts, and the answers to #14 and #15 to the instructor. Due start of next

week’s lab.

