
TECH 3233
Lab #6

Interrupts
Ver INT/TOF - 0.6

In this experiment we will use both external interrupts (INT0 and INT1) and a Timer Overflow Interrupt

to turn on and off a flashing LED.

Flashing an LED

If you recall, in Lab 3 we blinked the onboard LED by using the following code:

#include <atmel_start.h>

#include <avr/io.h>

#include <util/delay.h>

int main(void)

{

 /* Initializes MCU, drivers and middleware */

 atmel_start_init();

 DDRB = 0b00100000; // configure pin 5 of PORTB as output

(digital pin 13 on the Arduino Uno)

 while(1)

 {

 PORTB = 0b00100000; // set 5th bit to HIGH

 _delay_ms(1000);

 PORTB = 0b00000000; // set 5th bit to LOW

 _delay_ms(1000);

 }

}

But, after the setup, all we did in main was turn on a bit, pause, turn off a bit, pause and repeat. But

what if we want to make better use of the processor while waiting for the next on/off? We can use

interrupts to allow the processor to do “other things” while still blinking the LED at a constant rate.

To do this we will use TIMER0 and the Overflow Interrupt.

Figure 1- TIMER0 Overview

Timer0, can be used to measure and generate square waves, but in this experiment, we are just using

the free running 8-bit timer (TCNT0) and the Timer Overflow (TOV0).

TCNT0 just counts at a known interval. That interval is defined by the OSC on the Arduino board

(16MHz) and the Timer Prescaler defined by TCCR0B Register:

(For this experiment FOC0A and FOC0B should be left at 0)

So if CS02:CS00 was 001, TNCT0 would increment by one every clock cycle (since it is clk/(no presscaling)

it would increment at a frequency of 16MHz or every 63pSec.

If we use CS02:CS00 as 101, TCNT0 would increment at 16Mhz/1024, or 15625HZ or once every 64uSec.

Since we wish to flash the LED 1 sec on then 1 sec off, we could in theory, use any prescaler, but any

prescale value we use will still be much lest than 1 second. For example, lets take the clk/1024 prescaler:

𝑓𝑠𝑐𝑎𝑙𝑒𝑑 =
16𝑀𝐻𝑧

1024

= 15625 𝐻𝑧

𝑡𝑖𝑚𝑒𝑐𝑜𝑢𝑛𝑡 =
1

𝑓𝑠𝑐𝑎𝑙𝑒𝑑

= 64𝑢𝑆𝑒𝑐

𝑡𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 = 256 ∗ 𝑡𝑖𝑚𝑒𝑐𝑜𝑢𝑛𝑡

= 16.384𝑚𝑆𝑒𝑐

So we need

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑠 =
1𝑆𝑒𝑐

16.384𝑚𝑆𝑒𝑐

= 61

So, for this we will need to add a counter within the interrupt to count how many times the interrupt

has occurred, then every 61 interrupts we toggle the LED. (so an “IF” inside the interrupt, looking at the

counter)

The Timer does have different operational modes. For this experiment we will leave it in NORMAL Mode

(Mode 0) as defined by this table:

Figure 2- Timer Modes of Operation

Bit WGM02 is found in register TCCR0B (already discussed) and the other two bits can be found in:

(We will not be using the high nibble bits in this experiment, just leave them at zero)

In Normal Mode, TCNT0 counts from 0 – 255 then resets back to 0 and an Overflow. Other modes will be

explained when needed.

Lastly, we will need to turn on the Timer Overflow Interrupt Enable bit found in:

(we will not be using OCIE0B or OCIE0A – output compare interrupts for this experiment so they will be

explained in a latter lab, just leave them 0 for this lab)

Don’t forget, since this is a MASKABLE INTERRUPT, you must execute the SEI(); command to enable the

Interrupt Flag in the Flag Register for the interrupt to be enabled.

External Interrupts (INT0 and INT1):

To turn on/off the flashing led we will be using both external interrupts (INT0 and INT1)

In addition to setting up DDRD and using PORTD, you will need to use the following registers to set up

the external interrupts (INT0 and INT1):

And remember that we need to use the correct Interrupt Service Routine (ISR) names as defined by

ATMEL Studio:

And lastly to turn on all maskable interrupts by using the c function:

sei();

Requirements:

Using only interrupts INT0, INT1 and Timer0 (Timer Overflow Interrupt), create a program that will flash

the LED built onto the Arduino board and control by pin 13 (PB5). It should flash at the rate of one

second on and one second off.

Using the prewired push button switches shown below:

Connect SW1 to D2 (PD2), the SW2 to D3 (PD3) and Vcc (+5v) and ground (as shown above).

Write a program that will do the following:

• On a rising edge of PD2 (INT0) – flash the LED

• On a falling edge of PD3 (INT1) – stop flashing the LED and ensure it is off

Even though you do not have to put anything inside the While(1) loop in main, we will print the value of

the 0-61 counter value to the screen using printf.

Submit the commented code in a zip file via online submission for credit.

