
9/10/2020

1

SPI Protocol

Sepehr Naimi

www.NicerLand.com

2

SPI Protocol

 Synchronous
 Full-duplex
 Serial
 Fast communication
 For short distances
 Pins

 SDO (Data Out)
 SDI (Data In)
 SCLK (shift clock)
 CE (chip enable)

3

Master vs. Slave

 Master begins the communication by pulling
down the CE pin of slave.

 Master makes the clock for communication

1

2

3

9/10/2020

2

4

SPI internal circuit

 A shift register in the master and another in the
slave

 By each clock, a bit is shifted out from the
master’s shift register into the slave shift register
and a bit is shifted from slave to master.

5

Multi-slave communication

S
la
ve

1

C
E

S
D
I

S
C
K

S
D
O S
la
ve

2

C
E

S
D
I

S
C
K

S
D
O

6

SPI pins in AVR

 MOSI (Master Out Slave In)
 MISO (Master In Slave Out)
 SCK
 SS

4

5

6

9/10/2020

3

7

Connecting a slave device to an AVR

8

AVR registers

 Control register:
 SPCR (SPI Control Register)

 Status Register:
 SPSR (SPI Status Register)

 Data Register:
 SPDR (SPI Data Register)

9

SPSR (SPI Status Register)

 SPIF (SPI Interrupt Flag)
 A serial transfer is completed.
 The SS pin is driven low in slave mode

 WCOL (Write Collision)
 SPI2X (Double SPI Speed)

7

8

9

9/10/2020

4

10

SPCR

 SPIE (SPI Interrupt Enable)
 SPE (SPI Enable)
 DORD (Data Order)
 MSTR (Master)
 CPOL (Clock Polarity)
 CPHA (Clock Phase)
 SPR1, SPR0 :SPI Clock Rate

SPI2X SPR1 SPR0 SCK Freq.

0 0 0 Fosc/4

0 0 1 Fosc/16

0 1 0 Fosc/64

0 1 1 Fosc/128

1 0 0 Fosc/2
(not recommended)

1 0 1 Fosc/8

1 1 0 Fosc/32

1 1 1 Fosc/64

CPOL CPHA Data Read and Change Time SPI Mode

0 0 Read on rising edge, changed on a falling edge 0

0 1 Read on falling edge, changed on a rising edge 1

1 0 Read on falling edge, changed on a rising edge 2

1 1 Read on rising edge, changed on a falling edge 3

11

Program 1: Sending ‘G’ through SPI as a master

#include <avr/io.h>

#define MOSI 3
#define SCK 5
#define SS 2

int main (void)
{
DDRB = (1<<MOSI)|(1<<SCK)|(1<<SS); //MOSI and SCK are output
DDRD = 0xFF; //Port D is output
SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR0); //enable SPI as master
while(1) //do for ever
{
PORTB &= ~(1<<SS); //enable slave device
SPDR = 'G'; //start transmission
while(!(SPSR & (1<<SPIF))); //wait transfer finish
PORTD = SPDR; //move received data to PORTD
PORTB |= (1<<SS); //disable slave device
}
return 0;
}

12

Program 2: Sending ‘G’ through SPI as a slave

#include <avr/io.h>

#define MISO 4

int main (void)
{
DDRD = 0xFF; //Port D is output
DDRB = (1<<MISO); //MISO is output
SPCR = (1<<SPE); //enable SPI as slave
while(1)
{
SPDR = 'G';
while(!(SPSR &(1<<SPIF))); //wait for transfer finish
PORTD = SPDR; //move received data to PORTD

}
return 0;

}

10

11

12

