UART Protocol

Chapter 11

Sepehr Naimi

; 9
B g
L ani
m www.NicerLand.com

8/27/2020

Nicer

1

= Communication theory
= Parallel vs. Serial
= Direction: Simplex, Half duplex, Full duplex
= Synchronization: Synchronous vs. Asynchronous
= Line coding
= UART protocol
= UART in AVR
= UART Registers
= Some programs

Parallel vs. Serial

= Parallel
= For short distances
= Not applicable for long distances
= More expensive
= Cross-talk problem

Parallel Transfer Serial Transfer

Do

Sender Receiver Sender Receiver

= Simplex [o |]
- Half Duplex +,

L=l
= Full Duplex —_ -]

Synchronization

= Synchronous

Tr i »

Clock Clock
[|

= Asynchronous

Tr R

= Line coding: presenting data using signals
= Digital

= NR7-I * Codina 1sina level nf unltane

V(Volt)
1 11 0 1 1 0

‘ 0
+15V — S
ov ’» Jime
= Ar
ooy

RS232

8/27/2020

UART Protocol

= Serial
Transmitter 0 RxD Receiver
= Asynchronous)
" Fu” duplex Receiver -+ RxD LLL) Transmitter
GND GND
Device 1 Device 2

goes out last

Data

One Frame

USART (Universal Synchronous Asynchronous
Receive Transmit

= USART devices can be used to communicate
asynchronously (UART) and synchronously.

= Since the synchronous capability of USART is not
used nowadays, we concentrate on UART.

UART in AVR

= Control registers: (initialize speed, data size, parity, etc)
= UBRR, UCSRA, UCSRB, and UCSRC

= Send/receive register

= UDR
= Status register
= UCSRA
Control & Status Unit
I UCSRA I UCSRE I UCSRC
system clock
o Transmit Unit
Clock divider
—T—
5 WD L5 Siart
- Y]
Tranamit shift register
RIKID pin TXD pin

8/27/2020

vcsaa: [Rxco | Txco [uorea | FEo | oors [weeo [Uax [mecw |

15 8

O e = = Fose —]

ate =
RGeS CRRR1) < 16

7
UBRRL: [UBRR[7:0]]

1 Fosc
Prescaling UBRR+1)) a ‘]

Down-Caunter
—= UART
baud rate

System 11
clock osc

Example: Find the UBRR value for 9600bps.

= Solution:

Baud rate = Fosc ‘:D 9600 = 16 MHz
AUCTEE= UBRR+) * 16 ® (UBRR+1) % 16

1MHz
+1)= —— = 104,166 UBRR = 103
> (UBRR+1) 500 =

Some Standard Baud rates

1200
2400
4800
9600
19,200
38,400
57,600
115,200

8/27/2020

UCSRB

UCSRB: | RXCIEO | TXCIEO | UDRIED | RXENO | TXENO |UCSZ02 | RxB80 | TxB80 |

= RXCIEO (Bit 7): Receive Complete Interrupt Enable
= To enable the interrupt on the RXCO flag in UCSROA you should set this bit to one.
= TXCIEO (Bit 6): Transmit Complete Interrupt Enable
= To enable the interrupt on the TXCO flag in UCSROA you should set this bit to one.
= UDRIEO (Bit 5): USART Data Register Empty Interrupt Enable
= To enable the interrupt on the UDREO flag in UCSROA you should set this bit to one.
= RXENO (Bit 4): Receive Enable
= To enable the USART receiver you should set this bit to one.
= TXENO (Bit 3): Transmit Enable
= To enable the USART transmitter you should set this bit to one.
= UCSZ02 (Bit 2): Character Size
= This bit combined with the UCSZ1:0 bits in UCSRC sets the number of data bits
(character size) in a frame.
= RXBS80 (Bit 1): Receive data bit 8
. 'gh{s iththe ninth data bit of the received character when using serial frames with nine
ata bits.
= TXB80 (Bit 0): Transmit data bit 8
= This is the ninth data bit of the transmitted character when using serial frames with
nine data bits.

13

UCSRC

ucsre: [umseLot Jumseroo | wemor | upmoo | useso [ucszor | ucszoo [ucroLo

= UMSEL01:00 (Bits 7:6): USART Mode Select
= These bits select the operation mode of the USART:
00 = Asynchronous USART operation
01 = Synchronous USART operation
10 = Reserved
11 = Master SPI (MSPIM)

« UPMO1:00 (Bit 5:4): Parity Mode

= These bits disable or enable and set the type of parity generation and check.
00 = Disabled
Reserved

Even Parity Ucsz02
11 = Odd Parity 0
= USBSO (Bit 3): Stop Bit Select 0
= This bit selects the number of stop bits to be transmitted. 0
= 1bit
1=2bits 0
= UCSZ01:00 (Bit 2:1): Character Size 1

= These bits combined with the UCSZ02 bit in UCSROB set the character size in a frame.

= UCPOLO (Bit 0): Clock Polarity
= This bit is used for synchronous mode.

14

Address bus Address
-
decodar
. Data bus o

8/27/2020

8/27/2020

UCSRA

UCSRA: | RXCO | TXCO | UDRED | FEO | DORO | UPED | U2X0 | MPCMO |

= RXCO (Bit 7): USART Receive Complete 0
= This flag bit is set when there are new data in the receive buffer that are not read yet. It is cleared
when the receive buffer is empty. It also can be used to generate a receive complete interrupt.
= TXCO (Bit 6): USART Transmit Complete 0
= This flag bit is set when the entire frame in the transmit shift r%(lster has been transmitted and there
are o new data available in the transmit data buffer register (t can be cleared by writing a
one to its bit location. Also it is aulomahca\l?/ cleared when a transmlt complete interrupt is executed.
It can be used to generate a transmit complete interrupt.
= UDREQ (Bit 5): USART Data Register Empty 0
= This flag is set when the transmit data buffer is empty and it is ready to receive new data. If this bit
is cleared you should not write to UDRO because it overrides your last data. The UDREO flag can
generate a data register empty interrupt.
= FEO (Bit 4): Frame Error 0
« This bit is set if a frame error has occurred in receiving the next character in the receive buffer. A
frame error is detected when the first stop bit of the next character in the receive buffer is zero.
= DORO (Bit 3): Data OverRun 0
= This bit is set if a data overrun is detected. A data overrun occurs when the receive data buffer and
receive shift register are full, and a new start bit is detected.
= PEO (Bit 2): Parity Error 0
. This bn is set if parity checking was enabled (UPM1 = 1) and the next character in the receive buffer
had a parity error when received.
= U2XO (Bit 1): Double the USART Transmission Speed 0
= MPCMO (Bit 0): Multi-processor Communication Mode 0

16

Program: sending character ‘G’ continuously

#include <avr/io.h>

void usart_init (void)

UCSROB = (1<<TXEN®);

UCSROC = (1<<UCSZ01) | (1<<UCSZ08);

UBRROL = 103; //baud rate = 960@bps
}

void usart_send (unsigned char ch)

while (! (UCSROA & (1<<UDREG))); //wait until UDR® is empty
UDRO = ch; //transmit ch

}

int main (void)

usart_init(); //initialize the USART

while(1) //do forever
usart_send ('G'); //transmit ‘G’ letter

return 0;

17

Program 2: It receives bytes of data serially and puts

them on Port B.

#include <avr/io.h>
int main (void)

{

DDRB = OXFF; //Port B is output

UCSROB = (1<<RXEN®); //initialize USART®
UCSROC = (1<<UCSZ01)|(1<<UCSZ08);

UBRROL = 103;

while(1)

{
while (! (UCSROA & (1<<RXC®))); //wait until new data
PORTB = UDRO;

}

return 90;

18

USB to serial converter in Arduino

R20UT L] L. RN
TTL side l RS232 side
(@) Inside MAXIIZ

B} MAX212 Connection fo the
Microcontrolier | MICrOprocessor

8/27/2020

