Process Control Systems

Control System Basics

Control Systems Have...

- One or more *controlled* or *dynamic variables*
- One or more *manipulated variables*
- One or more *disturbances*

3 Common Characteristics of Control Systems

- Measurement of the controlled variable
- Evaluation of the measurement by comparison to a set point. If measurement is different from set point, an error condition exits.
- Final Control Element adjusts the process to bring the controlled variable back to the set point value.

3 Basic Characteristics of Processes

- Process Load
- Process Lag
 - Capacitance
 - Resistance
 - Transportation Time
- Stability

Process Load

- The total amount of control agent needed to keep the process in a balanced condition
- Disturbances to the process cause a change in the process load

Process Lag

- The time it takes the controlled variable to reach a new value after a process load change
 - Capacitance is defined as the ability of a system to store a quantity of material or energy
 - *Resistance* is defined as opposition to flow
 - Transportation Time (or Dead Time) is the time it takes for a change to move from one place to another in a process.

Types of Process Control

- Open-Loop Control
- Closed-Loop Feedback Control
- Closed-Loop Feedforward Control

Open-Loop Control

Closed-Loop Feedback Control

Closed-Loop Feedforward Control

Basic Control Modes

- On-Off Control
- Proportional Control
- Proportional + Integral Control
- Proportional + Derivative Control
- Proportional + Integral + Derivative (PID)

On-Off Control

- As the name implies, the final control element is either ON or OFF
- Most popular method of control
- Very common in domestic applications

On-Off Control

Plot of measured variable and final control element position versus time in on-off controller.

On-Off Control

Differential-Gap Control

Plot of measured variable and final control element position versus time in a differential-gap controller.

Differential Gap Controller

Differential Gap Controller Action: Tank Filling

Proportional Control

- In proportional control, the final control element is purposely kept in some intermediate position
- Term is usually applied to any type of control system where the position of the final control element is determined by the relationship between the measured variable and the setpoint.

Proportional Control

Controller Gain

$controllergain = \frac{\Delta output}{setpoint-measurement}$

Proportional Band

- Proportional Band is the amount of change in the dynamic variable that causes a full range of controller output
- In other words, proportional band is equal to the range of values of the dynamic variable that corresponds to a full or complete change in controller output.

Proportional Band

• Normally expressed as a percentage:

% proportional band =
$$\frac{1}{gain} \times 100$$

Then we have:
 $gain = \frac{100}{\%}$ proportional band

Determining Controller Output

output = $\frac{100}{\%}$ proportional band ×(set point - measurement) + bias

Gain & Proportional Band

Proportional Controller

Offset in Proportional Control

Offset in Proportional Control

$\Delta offset = \frac{\% \text{ proportional band}}{100}$ $\times \Delta \text{measurement}$

Proportional + Integral Control

- Integral control may be referred to as "Reset"
- Often used in conjunction with proportional control to reset the offset caused by proportional control
- Integrates any difference between the measurement and the set point, changing the controller output until the error is zero.

Controller Responses

Proportional Band in PI Control

PI Controller

Proportional + Derivative Control

- Used in systems where errors may change very rapidly
- This situation is especially true in
 processes that have small capacitance
- Often referred to as "Rate"

PD Response

PD Controller

ISA Standard (Dependent Gains)

Derivative of Error:

$$CV = K_c \left[(E) + \frac{1}{T_i} \int_0^t (E) dt + T_d \frac{d(E)}{dt} \right] + Bias$$

Derivative of PV:

$$CV = K_c \left[(E) + \frac{1}{T_i} \int_0^t (E) dt + T_d \frac{d(PV)}{dt} \right] + Bias \quad (E = SP - PV)$$
$$CV = K_c \left[(E) + \frac{1}{T_i} \int_0^t (E) dt + T_d \frac{d(PV)}{dt} \right] + Bias \quad (E = PV - SP)$$

Independent Gains

Derivative of Error:

$$CV = K_p(E) + K_i \int_0^t (E)dt + K_d \frac{d(E)}{dt} + Bias$$

Derivative of PV:

$$CV = K_p(E) + K_i \int_0^t (E) dt + K_d \frac{d(PV)}{dt} + Bias \quad (E = SP - PV)$$

$$CV = K_p(E) + K_i \int_0^t (E) dt + K_d \frac{d(PV)}{dt} + Bias \quad (E = PV - SP)$$