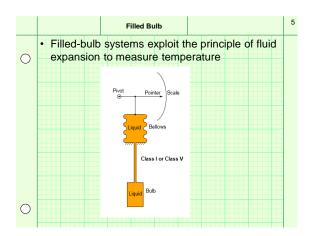
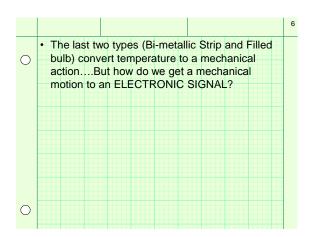


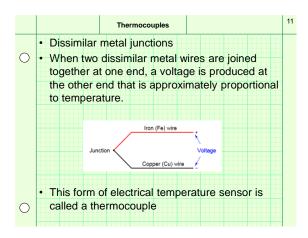
	Transducer	2
0	• A <u>Transducer</u> is a device that converts variations in a physical quantity, such as pressure or brightness, into an electrical signal.	
0		



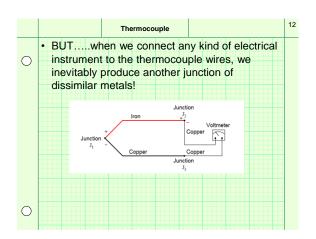




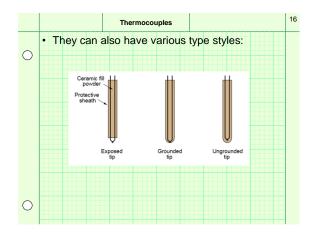
	Thermistors and RTDs	7
	Temperature sensors where temperature	
\bigcirc	effects a change in electrical resistance.	
	Self Heating Error	
	 In order to measure the resistance of either device, 	
	we must pass an electric current through it.	
	Unfortunately, this results in the generation of heat due to power dissipation:	
	$P = I^2 R$	
	- To minimize effect limit current (but this limits	
	voltage drop across component) or use a pulse	
\sim	current to read	
\bigcirc		


	Thermistors and RTDs	8
_	Thermistors are devices made of metal oxide	
\circ	which either increase in resistance with	
	increasing temperature (a positive temperature coefficient) or decrease in resistance with	
	increasing temperature (a negative	
	temperature coefficient)	
	 highly sensitive and nonlinear 	
	 typically used where high accuracy is unimportant. 	
\bigcirc		
\bigcirc		

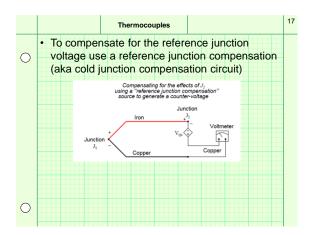
		Thermistors and RTDs	9
		devices made of pure metal wire	
0		atinum or copper) which always	
		n resistance with increasing	
	temperatu		
	 insensitiv 	ve but very linear	
0			



	Si	licon		10
0	The silicon bands an extremely comr			
Ŭ	sensor			
	 The principle of the voltage of a silicon 			
	base-emitter juncti	on of a bi	polar junction	
	transistor (BJT), is	temperat	ure-dependent.	
	4	(
0		•		



	Thermocouple	13
	Thus, thermocouple systems are fundamentally differential temperature	
0	sensors.	
	• Provide an electrical output proportional to the	
	difference in temperature between two	
	different points.	
	The wire junction we use to measure the	
	temperature of interest is called the	
	measurement junction.	
	The other junction is called the reference	
	junction (or the cold junction , because it is	
	typically at a cooler temperature than the	
0	process measurement junction)	


-	TI -				
	• Ine	rmocouples e	exist in many d	iπeren	it types,
	eac	h with its own	color codes fo	or the	dissimilar-
' E					
	met	ai wires. Here	e is a table sho	wing 1	ine more
-	com	mon thermo	couple types a	nd the	ir
					•
	star	dardized col	ors		
	Type	Positive wire characteristic	Negative wire characteristic	Plug	Temp. range
	т	Copper (blue) yellow colored	Constantan (red) silver colored	Blue	-300 to 700 $^o\mathrm{F}$
	J	Iron (white) magnetic, rusty?	Constantan (red) non-magnetic	Black	32 to 1400 °F
-	Е	Chromel (violet) shiny finish	Constantan (red) dull finish	Violet	32 to 1600 °F
		Chromel (yellow) non-magnetic	Alumel (red) magnetic	Yellow	32 to 2300 °F
	K		Mit-II (I)	Orange	32 to 2300 °F
	N	Nicrosil (orange)	Nisil (red)		32 to 2700 °F
) Platinum (red)	Green Grey	32 to 2700 °F 32 to 3380 °F

