
\qquad

1

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2

	$: \because: 8$ Analog Signals Analog signals - directly measurable quantities in terms of some other quantity
Examples:	
- Thermometer - mercury height rises as	
temperature rises	
- Car Speedometer - Needle moves farther	
right as you accelerate	
- Stereo - Volume increases as you turn the	
knob.	

3

Digital Signals

Digital Signals - have only two states. For digital computers, we refer to binary states, 0 and 1. " 1 " can be on, " 0 " can be off.

Examples:

- Light switch can be either on or off
- Door to a room is either open or closed

4

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
5

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Just what does an A/D converter DO?

- Converts analog signals into binary words

7

Analog \rightarrow Digital Conversion 2-Step Process:

\qquad

- Quantizing - breaking down analog value is a set of finite states
- Encoding - assigning a digital word or number to each state and matching it to the input signal
\qquad
\qquad
\qquad
\qquad
\qquad

8
Step 1: Quantizing

Example:	$\begin{array}{\|l\|} \hline \text { Output } \\ \text { States } \\ \hline \end{array}$	Discrete Voltage Ranges (V)
	0	0.00-1.25
signals. Separate them	1	1.25-2.50
into a set of discrete states with 1.25 V	2	2.50-3.75
increments. (How did	3	3.75-5.00
we get 1.25 V ? See	4	5.00-6.25
	5	6.25-7.50
	6	7.50-8.75
	7	8.75-10.0

\qquad

9

Quantizing

The number of possible states that the converter can output is:

$\mathrm{N}=2^{\mathrm{n}}$

where n is the number of bits in the AD converter

Example: For a 3 bit A / D converter, $\mathrm{N}=2^{3}=8$.

Analog quantization size:

$\mathrm{Q}=\left(\mathrm{V}_{\max }-\mathrm{V}_{\min }\right) / \mathrm{N}=(10 \mathrm{~V}-0 \mathrm{~V}) / 8=1.25 \mathrm{~V}$

10

Encoding - Here we assign the digital value (binary number) to each state for the computer to read.			: $\because: 8.8$
	Output States	Output Binary Eq	alent
	0	000	
	1	001	
	2	010	
	3	011	
	4	100	
	5	101	
	6	110	
	7	111	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

11

There are two ways to best improve accuracy of A/D conversion:

- increasing the resolution which improves the accuracy in measuring the amplitude of the \qquad analog signal.
- increasing the sampling rate which increases the maximum frequency that can be measured.

Resolution

- Resolution (number of discrete values the converter can produce) = Analog Quantization size (Q)
$(Q)=$ Vrange $/ 2^{\wedge} n$, where Vrange is the range of analog \qquad voltages which can be represented
\qquad
- limited by signal-to-noise ratio (should be around 6 dB)
- In our previous example: $\mathrm{Q}=1.25 \mathrm{~V}$, this is a high resolution. A lower resolution would be if we used a 2-bit converter, then the resolution would be $10 / 2^{\wedge} 2=2.50 \mathrm{~V}$.

13

Sampling Rate

Frequency at which ADC evaluates analog signal. As we see in the second picture, evaluating the signal more often more accurately depicts the ADC signal. \qquad
\qquad
14

Aliasing

- Occurs when the input signal is changing much faster than the sample rate.

For example, a 2 kHz sine wave being sampled at 1.5 kHz would be reconstructed as a 500 Hz (the aliased signal) sine wave.

Nyquist Rule:

- Use a sampling frequency at least twice as high as the maximum frequency in the signal to avoid aliasing.
\qquad
\qquad
\qquad
\qquad
\square
\qquad

15

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
16

\qquad
Carpenter \qquad

- Converters
- Flash ADC
- Dual Slope (integrating) ADC
- Successive Approximation ADC \qquad
\qquad
\qquad
17

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
18

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
19

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
20

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
21

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
22

Dual Slope Converter

- The sampled signal charges a capacitor for a fixed \qquad amount of time
- By integrating over time, noise integrates out of the conversion
- Then the ADC discharges the capacitor at a fixed rate with the counter counts the ADC's output bits A longer discharge time results in a higher count \qquad
\qquad
23

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
25

Digital-to-Analog Conversion

\qquad

- When data is in binary form, the 0's and 1's
\qquad may be of several forms such as the TTL form where the logic zero may be a value up \qquad o 0.8 volts and the 1 may be a voltage from 2 to 5 volts.
- The data can be converted to clean digital form using gates which are designed to be on or off depending on the value of the incoming
\qquad signal.

26

Digital-to-Analog Conversion

- Data in clean binary digital form can be
\qquad converted to an analog form by using a summing amplifier. \qquad
- For example, a simple 4-bit D/A converter can be made with a four-input summing \qquad amplifier. \qquad
\qquad
\qquad
27

28

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
29

- The summing amplifier with the R-2R ladder of resistances shown produces the output where the D's take the value 0 or 1 .
- The digital inputs could be TTL voltages which close the switches on a logical 1 and leave it grounded for a logical 0 .
- This is illustrated for 4 bits, but can be extended to any number with just the resistance values R and $2 R$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
31

Successive Approximation ADC By

Stephanie Pohl
\qquad

- A Successive Approximation Register (SAR)
\qquad is added to the circuit
- Instead of counting up in binary sequence, this register counts by trying all values of bits starting with the MSB and finishing at the LSB.
- The register monitors the comparators output to see if the binary count is greater or less than the analog signal input and adjusts the bits accordingly
\qquad
\qquad
\qquad
\qquad
\qquad
32

Successive Approximation ADC Circuit

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
34

Successive Approximation

Advantages

- Capable of high speed and reliable
- Higher resolution successive approximation ADC's will be slower
- Speed limited to $\sim 5 \mathrm{Msps}$
- Medium accuracy ADC types
- Good tradeoff between
speed and cost
- Capable of outputting the binary number in serial (one bit at a time) format.

35

36

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
37

Successive Approximation Example

\qquad

- 10 bit resolution or 0.0009765625 V of Vref
- Vin= 6 volts
- Vref=1volts
- Find the digital value of Vin

Bit	Voltage
9	.5
8	.25
7	.125
6	.0625
5	.03125
4	.015625
3	.0078125
2	.00390625
1	.001952125
0	.0009765625

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
38

\qquad
\qquad
\qquad
\qquad

Successive Approximation

\qquad

- Next Calculate MSB-1 (bit 8)
- Compare $\mathrm{V}_{\text {in }}=0.6 \mathrm{~V}$ to $\mathrm{V}=\mathrm{V}_{\text {ref }} / 2+\mathrm{V}_{\text {ref }} / 4=0.5+0.25=0.75 \mathrm{~V}$
- Since $0.6<0.75$, MSB is turned off \qquad
- Calculate MSB-2 (bit 7)
- Go back to the last voltage that caused it to be turned on (Bit 9) and add it to $\mathrm{V}_{\text {ref }} / 8$, and compare with $\mathrm{V}_{\text {in }}$
- Compare $\mathrm{V}_{\text {in }}$ with $\left(0.5+\mathrm{V}_{\text {ref }} / 8\right)=0.625$
- Since $0.6<0.625$, MSB is turned off

40

Successive Approximation

\qquad

- Calculate the state of MSB-3 (bit 6)
- Go to the last bit that caused it to be turned on (In this case MSB-1) and add it to $\mathrm{V}_{\text {ref }} / 16$, and compare it to $V_{\text {in }}$
- Compare $\mathrm{V}_{\text {in }}$ to $\mathrm{V}=0.5+\mathrm{V}_{\text {ref }} 116=0.5625$
- Since $0.6>0.5625$, MSB-3=1 (turned on)

1	0	0	1								

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
41

Successive Approximation

\qquad

- This process continues for all the remaining
\qquad bits.
-Digital Results: \qquad

\qquad
-Results: $\frac{1}{2}+\frac{1}{16}+\frac{1}{32}+\frac{1}{256}+\frac{1}{512}=.599609375 \mathrm{~V}$

42

