

- Introduction: Analog vs. Digital?
- Examples of ADC Applications
- Types of A/D Converters
- Successive Approximation ADC

2

Analog Signals

Analog signals – directly measurable quantities in terms of some other quantity

Examples:

- Thermometer mercury height rises as temperature rises
- Car Speedometer Needle moves farther right as you accelerate
- Stereo Volume increases as you turn the knob.

Digital Signals – have only two states. For digital computers, we refer to binary states, 0 and 1. "1" can be on, "0" can be off.

Examples:

- Light switch can be either on or off
- Door to a room is either open or closed

5

Examples of A/D Applications

- Microphones take your voice varying pressure waves in the air and convert them into varying electrical signals
- Strain Gages determines the amount of strain (change in dimensions) when a stress is applied
- Thermocouple temperature measuring device converts thermal energy to electric energy
- Voltmeters
- Digital Multimeters

• Quantizing - breaking down analog value is a set of finite states

• Encoding - assigning a digital word or number to each state and matching it to the input signal

8

Step 1: Quantizi	ng		
Example: You have 0-10V signals. Separate them into a set of discrete states with 1.25V increments. (How did we get 1.25V? See next slide)	Output States	Discrete Voltage Ranges (V)	
	0	0.00-1.25	
	1	1.25-2.50	
	2	2.50-3.75	
	3	3.75-5.00	
	4	5.00-6.25	
	5	6.25-7.50	
	6	7.50-8.75	
	7	8.75-10.0	

Quantizing

The number of possible states that the converter can output is: N=2ⁿ

where n is the number of bits in the AD converter

Example: For a 3 bit A/D converter, $N=2^3=8$.

Analog quantization size: Q=(V_{max} - V_{min})/N = (10V - 0V)/8 = 1.25V

10

11

Accuracy of A/D Conversion

- increasing the resolution which improves the accuracy in measuring the amplitude of the analog signal.
- increasing the sampling rate which increases the maximum frequency that can be measured.

Resolution

- limited by signal-to-noise ratio (should be around 6dB)
- In our previous example: Q = 1.25V, this is a high resolution. A lower resolution would be if we used a 2-bit converter, then the resolution would be 10/2² = 2.50V.

14

Aliasing

• Occurs when the input signal is changing much faster than the sample rate.

For example, a 2 kHz sine wave being sampled at 1.5 kHz would be reconstructed as a 500 Hz (the aliased signal) sine wave.

Nyquist Rule:

• Use a sampling frequency at least twice as high as the maximum frequency in the signal to avoid aliasing.

17

Flash ADC

- Consists of a series of comparators, each one comparing the input signal to a unique reference voltage.
- The comparator outputs connect to the inputs of a priority encoder circuit, which produces a binary output

How Flash Works

- As the analog input voltage exceeds the reference voltage at each comparator, the comparator outputs will sequentially saturate to a high state.
- The priority encoder generates a binary number based on the highest-order active input, ignoring all other active inputs.

Digital-to-Analog Conversion

• The data can be converted to clean digital form using gates which are designed to be on or off depending on the value of the incoming signal.

26

Digital-to-Analog Conversion

- Data in clean binary digital form can be converted to an analog form by using a summing amplifier.
- For example, a simple 4-bit D/A converter can be made with a four-input summing amplifier.

Successive Approximation ADC _{By}

Stephanie Pohl

- A Successive Approximation Register (SAR) is added to the circuit
- Instead of counting up in binary sequence, this register counts by trying all values of bits starting with the MSB and finishing at the LSB.
- The register monitors the comparators output to see if the binary count is greater or less than the analog signal input and adjusts the bits accordingly

