
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

1

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2

3

4

5

6

7

8

9

$$
I_{C}=\frac{V_{c c}-V_{c e}}{R_{L}}
$$

- Where
- I_{c} - Collector current
- V_{cc} - supply voltage
- V_{ce} - voltage drop across the transistor (Collector to Emitter) from the data sheet
- R_{L} - load resistance
Check the datasheet to ensure the transistor can handle the current required for the load!
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
11

\qquad
\qquad
\qquad
$-\beta=200$
$-I_{c}=4 \mathrm{~mA}$
$-I_{b}=20 \mathrm{uA}$
$-\mathrm{V}_{\mathrm{be}}=0.7 \mathrm{~V}$
- Find the value of the Base resistor $\left(R_{b}\right)$ required to switch the load fully "ON" when the input terminal voltage exceeds 2.5 v .

$$
R_{b}=\frac{V_{i n}-V_{b e}}{I_{b} * 10}=\frac{2.5 V-0.7 V}{20 u A * 10}=9 \mathrm{~K}
$$

- (note, the biggest resistor you can use is 90 K (taking out the 10x fudge factor)
\qquad

13

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

14

16

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
17

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
18

\qquad
\qquad

19

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
20

| | Summary | |
| :--- | :--- | :--- | :--- |
| - When using the transistor as a switch, a small Base current controls a
 much larger Collector load current. | | |
| | - When using transistors to switch inductive loads such as relays and
 solenoids, a "Flywheel Diode" is used. | |
| | | |
| | | |

21

